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1.1 Machine Learning

The notation ”Machine Learning” is usually assisociated with Deep Learning and Big Data, but it is of much
longer history. Machine Learning can be traced back to the 1960s, and it has a formal and clear declearation.

Definition 1.1 (Machine Learning) Machine Learning means learning from experience or learning from
data.

1.1.1 History of Machine Learning

1. Vapnic and Cherononkis proposed VC theory from 1969 to 1971.

2. Leslie Valient developed the PAC (probabilistic approximately correct) theory, which won him the
2010 Turing Award.

3. R.Schapire and Y.Freund proposed boosting algorithm in 1990s, and received the Godel Price.

4. Vapnik brought out the SVM (support Vector Machine) algorithm.

5. Pearl put forward Graphic Models in 1980s and won the 2011 Turing Award.

6. Yoshua Bengio, Geoffrey Hinton and Yann LeCun Opened up a new field of deep learning.

1.1.2 Tasks and Brunches in Machine Learning

With decades of development, machine learning become a huge topic nowadays. Main brunches are listed
below.

Supervised Learning is the machine learning task of learning a function that maps an input to an output
based on example input-output pairs [1]. Many common tasks are included in supervised learning:

• classification: Assign a category to each item.

• regression: Predict a real value for each item.

• ranking : Order items according to some criterion.
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Unsupervised Learning is a type of algorithm that learns patterns from untagged data. The philosophy
of unsupervised learning is to discover patterns in the data itself. Famous unsupervised learning models
include Boltzmann Machine, Autoencoder and VAE.

Reinforcement Learning is an area of machine learning concerned with how intelligent agents ought
to take actions in an environment in order to maximize the notion of cumulative reward[1]. Reinforcement
learning can be called ”learning to control” and is an important approach in robotic systems and autonomous
driving.

Online Machine Learning is a method of machine learning in which data becomes available in a sequen-
tial order and is used to update the best predictor for future data at each step. Online machine learning can
form a closed-loop system that is common in commercial applications such as recommendation systems.

1.2 Recommended Books

1.2.1 Learning Theory

1. Foundations of Machine Learning

2. Understanding Machine Learning from Theory to Algorithms

1.2.2 Reinforcement Learning

1. Reinforcement Learning Online Course

2. Not recommend to read Reinforcement Learning An Introduction

1.2.3 Graphical Models

1. Koller’s Online Course

1.2.4 Optimization

1. Convex Optimization Algorithm and Complexity

1.3 Formulation of Learning

The example below are based on a classification problem.

1. Collect Training data

Symbols: (x1, y1), · · · , (xn, yn), xi ∈ X , yi ∈ Y
X : instance space

Y: label space

https://deepmind.com/learning-resources/-introduction-reinforcement-learning-david-silver
https://www.mooc-list.com/instructor/daphne-koller
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2. Learn a Classifier

Use algorithm A,A : S 7→ f, f : X → Y

3. Using f on test data

f(xn+1), f(xn+2), · · ·

How can we ensure that f behaves well in test data?

1. iid: Independent homogeneous distribution, (xi, yi) ∼ DXY

How to evaluate the performance of f

1. Training Error: 1
n

∑n
i=1 I[yi = f(xi)]

2. Test Error(Expected Error): P(x,y)∼D(XY)
(y 6= f(x))

Suppose DXY is known, the theoretical optimal classifier is the Bayes classifier defined as

f∗(x) = argmax
y∈Y

P(y|x)

1.4 Generation

Is it the best to make training error 0%?

Consider a fitting problem. For a training set (x1, y1), · · · , (xn, yn), we can choose to use either a linear
model or a n-order polynomial model to fit. Obviously, the training error for the n-order polynomial model
is much smaller than that for the linear model. However, small training error does not necessarily lead to
small test error, which is known as the overfitting phenomenon. As the parameters of the model increase,
the model becomes better fitted, but generation may decrease, which is the result we do not want.

How can we choose a better model?

There is no such thing as the best model for any given problem. It is possible for any model to perform
well for a particular problem. Therefore, we should choose models carefully to achieve both good problem
solving and good interpretability.

1.5 Basic Inequalities

1.5.1 Markov Inequality

For random value X ≥ 0, if EX < +∞, then:

P(X ≥ k) ≤ EX

k
, ∀k > 0
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1.5.2 Chebyshev Inequality

For random value X, if EX exists, and EX2 < +∞(which also means var(X) < +∞), then:

P(|X − EX| ≥ t) ≤ var(X)

t2
, ∀t > 0

For random value X, if EX,EX2, ..., EXr is all known, then

P(X ≥ k) ≤ min
j

EXj

tj
, ∀j = 1, 2, . . . , r

1.5.3 Moment Generating Function

Definition 1.2 (Moment Generating Function) For random value X, if forall n ∈ N, EXn exists, we
can define Moment Generating Function of X:

M(t) := E(etX) = 1 + tEX + t2
EX2

2!
+ t3

EX3

3!
+ ...

We can use moment generating function to caculate a upperbound of P(X ≥ k)

Lemma 1.3 (upperbound of tail destribution) ∀t > 0, we apply Markov Inequality to P(X ≥ k):

P(X ≥ k) = P(etX ≥ etk)

≤ e−tkE(etX)

= e−tkM(t), (∀t > 0)

then we get the upperbound:

P(X ≥ k) ≤ inf
t>0
{e−tkM(t)}

References
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2.1 Recap

Recall Chernoff inequality and Chebyshev inequality from last lecture.

Theorem 2.1.1 (Chernoff Inequality). Let X be a random variable that is non-negative with moment
generating function EetX . Then ∀k > 0,

P(X ≥ k) ≤ inf
t>0

e−tkE[etX ].

Theorem 2.1.2 (Chebyshev Inequality). Let random variables X1, X2, . . . , Xn ∼ iid Bernoulli(1, p). We
have

P(
1

n

n∑
i=1

Xi − p ≥ ε) ≤
Var(

∑n
i=1Xi/n)

ε2
=
p(1− p)
nε2

Notice that Chebyshev inequality only uses second moment information of random variables, therefore its
convergence rate is only inversely proportional.

From law of large number, we naturally expect

P(
1

n

n∑
i=1

Xi − p ≥ ε) ≤ e−O(n).

2.2 Concentration Inequalities

2.2.1 Backgrounds of information theory

Definition 2.2.1 (Entropy). Let X be a random variable with probability mass function p = (p1, p2, . . . ).
The entropy of X is defined by

H(X) :=

{∑
i pilog2

1
pi

(bits)∑
i piln

1
pi

(nats)

Remark 2.2.2. The entropy of a random variable is the average level of "information", "surprise", or
"uncertainty" inherent in the variable’s possible outcomes.
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Definition 2.2.3 (Relative Entropy). For two probability mass functions P = (p1, p2, . . . ) and Q =
(q1, q2, . . . ), the relative entropy from Q to P is defined to be

D(P ||Q) :=

{∑
i pilog2

pi
qi

(bits)∑
i piln

pi
qi

(nats)

In particular, for two Bernoulli random variables P = (p, 1− p), Q = (q, 1− q)

D
(e)
B (p||q) := pln

p

q
+ (1− p)ln1− p

1− q
Remark 2.2.4. Relative entropy measures the difference of two distributions, but this relation is asymmetric.
Note that D(P ||Q) ≥ 0 for any P,Q and usually D(P ||Q) 6= D(Q||P ).

2.2.2 Chernoff Bound

Theorem 2.2.5. Let X1, X2, . . . , Xn be n iid Bernoulli random variables satisfying E[Xi] = p,∀i ∈ [n]. Then
for all ε > 0 we have

P(
1

n

n∑
i=1

Xi − p ≥ ε) ≤ e−nD
(e)
B (p+ε||p).

Proof. By Chernoff inequality,

P(
1

n

n∑
i=1

Xi − p ≥ ε) ≤ inf
t>0

e−t(p+ε)E[et
∑n
i=1Xi ].

Notice that

E[et
∑n
i=1Xi ] =

n∏
i=1

E[etXi ] = (pet + 1− p)n. (2.1)

It thus follows that

P(
1

n

n∑
i=1

Xi − p ≥ ε) ≤ inf
t>0

e−nt(p+ε) · (pet + 1− p)n

≤ e−nD
(e)
B (p+ε||p).

The last step is a simple calculation and left as homework.

Theorem 2.2.6. Let X1, . . . , Xn be n random variables satisfying Xi ∈ [0, 1] and E[Xi] = p,∀i ∈ [n]. Then
for all ε > 0, we have

P(
1

n

n∑
i=1

Xi − p ≥ ε) ≤ e−nD
(e)
B (p+ε||p).

Proof. Notice that exponent function is convex. By Jensen’s inequality, we have

E[etX ] ≤ E[Xet] + E[(1−X)e0] = pet + 1− p. (2.2)

It thus follows that

E[et
∑n
i=1Xi ] ≤ (pet + 1− p)n.

Replacing Eq (2.1) by this inequality, the rest of the proof is the same as Theorem 2.2.5.
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Theorem 2.2.7. Let X1, . . . , Xn be n random variables satisfying Xi ∈ [0, 1] and E[Xi] = pi,∀i ∈ [n]. Mark
p = 1

n

∑n
i=1 pi, then for all ε > 0 we have

P(
1

n

n∑
i=1

Xi − p ≥ ε) ≤ e−nD
(e)
B (p+ε||p).

Proof. Notice that logarithmic function is concave. By Jensen’s inequality, we have∑n
i=1 ln(1− pi + pie

t)

n
≤ ln(1− p+ pet),

then combining this with Eq (2.2)

E[et
∑n
i=1Xi ] ≤

n∏
i=1

(1− pi + pie
t)

≤ (1− p+ pet)n.

Replacing Eq (2.1) by this inequality, the rest of the proof is the same as Theorem 2.2.5.

Remark 2.2.8. The other side of tail bound can be proved similarly.

Lemma 2.2.9. (left as homework, find when the gap reaches infimum) D(e)
B (p+ ε||p) ≥ 2ε2.

Plugging this lemma into Theorem 2.2.7, we have the following bound.

Theorem 2.2.10 (Additive Chernoff Bound). Let X1, . . . , Xn be n random variables satisfying Xi ∈ [0, 1]
and E[Xi] = pi,∀i ∈ [n]. Let p = 1

n

∑n
i=1 pi, then for all ε > 0 we have

P(
1

n

n∑
i=1

Xi − p ≥ ε) ≤ e−2nε
2

.

Remark 2.2.11. Note that Chernoff inequality requires Xi are mutually independent, while pairwise inde-
pendence suffices for Chebyshev inequality.

2.2.3 Hoeffding’s inequality

Theorem 2.2.12 (Hoeffding’s inequality). Let X1, X2, ...Xn be n independent random variables in [ai, bi].
Let µ =

∑n
i=1 E[Xi]

n , then we have

P(
1

n

n∑
i=1

Xi − µ ≥ ε) ≤ e
−2n2ε2∑n

i=1
(bi−ai)2 .

2.2.4 Draw with/without replacement in a population

For N numbers a1, a2, ..., aN ∈ {0, 1},let p = 1
N

∑N
i=1 ai. We consider the following cases.

Draw with replacement x1, x2, ..., xn are randomly drawn with replacement from {a1, a2, ..., aN}. Then
Xi are iid Bernoulli random variables with E[Xi] = p. This case is essentially the same as Theorem 2.2.5.
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Draw without replacement y1, y2, ..., yn are randomly drawn without replacement from {a1, a2, ..., aN}.
Now y1, . . . , yn are dependent. However, we can also show that:

P(
1

n

n∑
i=1

yi − p ≥ ε) ≤ e−2nε
2

.

Proof. It suffices to proof

E[et
∑n
i=1 yi ] ≤ E[et

∑n
i=1 xi ], (2.3)

namely the moment generation function is consistently less than the case where we draw with replacement.
To prove this we expand moment generation functions into polynomials

E[et
∑n
i=1 xi ] = 1 + tE[

n∑
i=1

xi] +
t2

2
E[(

n∑
i=1

xi)
2] + ...

Notice that every polynomial terms look like f(t)E[
∏
i∈I xi] = f(t)P(

∏
i∈I xi = 1) where f(t) is a polynomial

function of t. For the case where numbers are drawn without replacement, we have f(t)E[
∏
i∈I yi] =

f(t)P(
∏
i∈I yi = 1). Now

∏
i∈I yi = 1 holds only when yi = 1,∀i ∈ T , which happens with less probability

when drawn without replacement. Then we have

E(
∏
i∈I

yi) ≤ E(
∏
i∈I

xi)

and thus Eq (2.3) holds.

2.2.5 McDiarmid Inequality

Chernoff bound is a special case of McDiarmid inequality.

Theorem 2.2.13 (McDiarmid’s inequality). Let X1, . . . , Xn ∈ X be n independent random variables
and there exists constant c1, . . . , cn such that f : X 7→ R satisfies

|f(x1, ..., xi, ..., xn)− f(x1, ..., x
′

i, ..., xn) | ≤ ci

for all i ∈ [n] and ∀x1, x2, ..., xn, xi′ ∈ X . Then for all ε > 0 we have

P(|f(x1, ..., xn)− E[f(x1, ..., xn)] | ≥ ε) ≤ exp(
−2ε2∑n
i=1 c

2
i

).

2.3 VC Theory (Uniform Convergence Theory for ERM)

Binary classification We consider learning a hypothesis f from n data points (x1, y1), . . . , (xn, yn) sampled
from D, where xi ∈ Rd, yi ∈ {±1}. Training error can thus be written as 1

n

∑n
i=1 1[yi 6= f(xi)]. We can also

represent test error as P(x,y)∼D(y 6= f(x)).

Notice that E[1(yi 6= f(xi))] = P(x,y)∼D(y 6= f(x)). Generalization gap measures the gap between training
loss and population loss. Fix f , 1[yi 6= f(xi)] are iid Bernoulli variables. Thus we can show by Theorem 2.2.5
that for any ε > 0

P

(
P(x,y)∼D(y 6= f(x))− 1

n

n∑
i=1

1[yi 6= f(xi)] ≥ ε

)
≤ e−2nε

2

.
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This inequality seems to be conflicted with overfitting phenomenon. Actually, the function f̂ is learned
depending on the training data so that 1[yi = f̂(xi)] are not independent. We therefore cannot bound the
error and may suffer from overfitting.
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3.1 From finite number to infinite number

There are two measurements of the performance of a classifier:

• Training error: PS(y ̸= f(x)) := 1
n

∑n
i=1 1{yi ̸= f(xi)}

• Generalization error1: PD(y ̸= f(x)) = E(x,y)∼D [1{y ̸= f(x)}]

We are interested in the generalization gap PD(y ̸= f(x))−PS(y ̸= f(x)). Intuitively, it is closely related
to the complexity of our model.

Even though it’s unlikely that the number of classifiers can be finite in practice, it’s important for us to first
consider the finite case:

Theorem 3.1 Suppose we have a finite model class F , |F| < ∞. For any classifier f in F , we have the
bound

P(PD(y ̸= f(x))− PS(y ̸= f(x)) ≥ ϵ) ≤ |F|e−2nϵ2

Proof:

P(PD(y ̸= f(x))− PS(y ̸= f(x)) ≥ ϵ)

≤ P(∃f ∈ F , PD(y ̸= f(x))− PS(y ̸= f(x)) ≥ ϵ)

≤
∑
f∈F

P (PD(y ̸= f(x))− PS(y ̸= f(x)) ≥ ϵ) (Union bound)

≤ |F |e−2nϵ2 (Chernoff Bound)

Thus in conclusion, when |F| is finite, the generalization gap can be estimated by applying the union bound.
That is, for a finite collection of events A1, A2, . . . , An we have

P

(⋃
i

Ai

)
≤
∑
i

P (Ai)

What if the model class F is infinite?
1We use D to denote the distribution of z = (x, y).
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3.2 VC-Theory

For the sake of simplicity, we first introduce some notations:

• for f ∈ F and z = (x, y) sampled from the distribution D, define ϕf (z) = 1{f(x) ̸= y}

• define Φ = {ϕf : f ∈ F}

Our ultimate goal in this section is to bound the following quantity:

P

(
sup
ϕ∈Φ

∣∣∣∣∣ 1n
n∑

i=1

ϕ(zi)− Ez [ϕ(z)]

∣∣∣∣∣ ≥ ϵ

)

3.2.1 Step1: Double Sample Trick

Lemma 3.2 Let X,X1, X2, . . . , X2n be i.i.d. Bernoulli random variables and p = E [X] , V1 = 1
n

∑n
i=1 Xi, V2 =

1
n

∑2n
i=n+1 Xi. If n ≥ ln 2

ϵ2 , then
1

2
P (|V1 − p| ≥ 2ϵ) ≤ P (|V1 − V2| ≥ ϵ) ≤ 2P

(
|V1 − p| ≥ ϵ

2

)
Proof: For the inequality on the right side,

|V1 − V2| ≥ ϵ⇒ (|V1 − p| ≥ ϵ

2
) ∨ (|V2 − p| ≥ ϵ

2
)

Using the union bound, we have

P (|V1 − V2| ≥ ϵ) ≤ P
(
|V1 − p| ≥ ϵ

2

)
+ P

(
|V2 − p| ≥ ϵ

2

)
= 2P

(
|V1 − p| ≥ ϵ

2

)
For the inequality on the left side, since |V1 − p| ≥ 2ϵ and |V2 − p| < ϵ are independent events and

|V1 − p| ≥ 2ϵ ∧ |V2 − p| < ϵ⇒ |V1 − V2| ≥ ϵ

we have
P (|V1 − p| ≥ 2ϵ)P (|V2 − p| < ϵ) ≤ P (|V1 − V2| ≥ ϵ)

Using Chernoff bound we can infer that P (|V2 − p| < ϵ) ≤ 1
2 when n ≥ ln 2

ϵ2 , thus
1

2
P (|V1 − p| ≥ 2ϵ) ≤ P (|V1 − V2| ≥ ϵ)

Lemma 3.3 If n ≥ ln 2
ϵ2 , then2

1

2
P

(
sup
ϕ∈Φ

∣∣∣∣∣E [ϕ(Z)]− 1

n

n∑
i=1

ϕ(zi)

∣∣∣∣∣ ≥ 2ϵ

)
≤ P

(
sup
ϕ∈Φ

∣∣∣∣∣ 1n
n∑

i=1

ϕ(zi)−
1

n

2n∑
i=n+1

ϕ(zi)

∣∣∣∣∣ ≥ ϵ

)
(3.1)

≤ 2P

(
sup
ϕ∈Φ

∣∣∣∣∣E [ϕ(Z)]− 1

n

n∑
i=1

ϕ(zi)

∣∣∣∣∣ ≥ ϵ

2

)

Proof: Left as homework.
2A slightly tricky point here is that: we are taking “sup” over a possibly uncountable family of random variables, so the

event {supϕ∈Φ

∣∣E [ϕ(Z)]− 1
n

∑n
i=1 ϕ(zi)

∣∣ ≥ ϵ} may not be P-measurable. But this is just a purely technical issue in Probability
Theory, and there is nothing to worry about.
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3.2.2 Step2: Symmetrization

For sampling zi = (xi, yi) from the probability distribution D, consider two equivalent sampling methods
below:

1. Draw z1, . . . , z2n from D independently.

2. Draw set {z1, . . . , z2n} from D and randomly draw a permutation σ.

Consider the second sampling methods, we have

P

(
sup
ϕ∈Φ

∣∣∣∣∣ 1n
n∑

i=1

ϕ(zi)−
1

n

2n∑
i=n+1

ϕ(zi)

∣∣∣∣∣ ≥ ϵ

)
= E

{z1,...,z2n}

[
Pσ

(
sup
ϕ∈Φ

∣∣∣∣∣ 1n
n∑

i=1

ϕ(zσ(i))−
1

n

2n∑
i=n+1

ϕ(zσ(i))

∣∣∣∣∣ ≥ ϵ

)]

Let NΦ(z1, . . . , zn) denotes |{(ϕ(z1), . . . , ϕ(zn)) : ϕ ∈ Φ}|.

Using union bound, we have 3

Pσ

(
sup
ϕ∈Φ

∣∣∣∣∣ 1n
n∑

i=1

ϕ(zσ(i))−
1

n

2n∑
i=n+1

ϕ(zσ(i))

∣∣∣∣∣ ≥ ϵ

)
≤ NΦ(z1, . . . , z2n)Pσ

(∣∣∣∣∣ 1n
n∑

i=1

ϕ(zσ(i))−
1

n

2n∑
i=n+1

ϕ(zσ(i))

∣∣∣∣∣ ≥ ϵ

)

Using “draw without replacement” Chernoff bound, we have

Pσ

(∣∣∣∣∣ 1n
n∑

i=1

ϕ(zσ(i))−
1

n

2n∑
i=n+1

ϕ(zσ(i))

∣∣∣∣∣ ≥ ϵ

)

= 2Pσ

(
1

n

n∑
i=1

ϕ(zσ(i))−
1

n

2n∑
i=n+1

ϕ(zσ(i)) ≥ ϵ

)

= 2Pσ

(
1

n

n∑
i=1

ϕ(zσ(i))−
1

2n

2n∑
i=1

ϕ(zσ(i)) ≥
ϵ

2

)

= 2Pσ

(
1

n

n∑
i=1

ϕ(zσ(i))− p ≥ ϵ

2

)
≤ 2e−2n( ϵ

2 )
2

= 2e−
nϵ2

2

Therefore, we got

P

(
sup
ϕ∈Φ

∣∣∣∣∣ 1n
n∑

i=1

ϕ(zi)−
1

n

2n∑
i=n+1

ϕ(zi)

∣∣∣∣∣ ≥ ϵ

)
≤ E

{z1,...,z2n}

[
NΦ(z1, . . . , z2n) · 2e−

nϵ2

2

]
= E

{z1,...,z2n}

[
NΦ(z1, . . . , z2n)

]
· 2e−nϵ2

2 (3.2)

3In fact, the RHS of the inequality below should be a summation over the set {(ϕ(z1), . . . , ϕ(z2n)) : ϕ ∈ Φ} (i.e. over all
dichotomies of {z1, · · · , z2n}), which has NΦ(z1, . . . , z2n) elements. But for the sake of simplicity and clarity, we follow the
notation used in class, so from here on, when we write ϕ(z1), · · · , ϕ(z2n), we refer to a specific element in {(ϕ(z1), . . . , ϕ(z2n)) :
ϕ ∈ Φ} (i.e. a dichotomy).
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3.2.3 Step3: Estimate Growth Function

Now we have to deal with the term E
{z1,...,z2n}

[
NΦ(z1, . . . , z2n)

]
in section 3.2. In the following part, we use

NΦ(n), the growth function of Φ, to represent the “worst case”:

Definition 3.4 NΦ(n) := max
z1,··· ,zn∼D

NΦ(z1, · · · , zn).

Concerning the behaviour of NΦ(n) (as function of n), there are essentially two cases:

1. For all n, NΦ(n) = 2n

2. At some n0, NΦ(n0) < 2n0

In case of the first one, all work we have done before will turn out to be useless, if not trivial4. And in the
second case, by exactly the same argument, we shall expect NΦ(n) to behaving well. So the main problem
is: we know that ∀n ≥ n0, NΦ(n) is strictly smaller than 2n, but to what extent?

The methodology is to try with some easy examples. The insight is that there is a special case with enough
generality:

Example 3.5 Set d = n0−1 and work with fixed sample z1, · · · , zn. We know that for every zi1 , · · · , zid+1
(i1 <

· · · < id+1), there some strings 5 of length d + 1 which is not “attainable” 6 at zi1 , · · · , zid+1
. We assume

that these “forbidden” strings can always be chosen to be (0, · · · , 0).

Then, any attainable string of length n can only contain at most d many 0’s. Thus the the number of
attainable strings, i.e. NΦ(z1, · · · , zn), is no more than

∑d
k=0

(
n
k

)
.

In general setting, the forbidden patterns need not be the same for different sub-strings, but (intuitively)
different patterns will “overlap” to create more forbidden patterns, and therefore we may expect there are
less many possibility in the general case.

Lemma 3.6 Assume that NΦ(d + 1) < 2d+1 and fix a sample z1, · · · , zn with n ≥ d + 1. Then we have
NΦ(z1, · · · , zn) ≤

∑d
k=0

(
n
k

)
. 7

Proof: To bound the NΦ(z1, · · · , zn), we have to give a lower bound of the number of strings not attainable.
The idea here is to look at the forbidden pattern of each sub-string, and then “extend” them. That is, we
may naturally extend a forbidden pattern w (at {i1 < · · · < id+1}) to a set E(w) of not attainable n-strings,
e.g. we can extend the pattern (0, 1, 1) at 2, 3, 5 to {(∗, 0, 1, ∗, 1)}

Now, for each I = {i1 < · · · < id+1} ⊂ {1, 2, · · · , n}, we choose a forbidden pattern wI , and extend it to a
set of n-strings E(wI),8 and we have to (lower) bound the |

⋃
I E(wI)|:

4In fact, in such case, our hypothesis class is in some sense not learnable. For reference, see [FML12], Chapter 3, Section 5.
5From now on, when we talk about (k-)string, we refer to a vector (of length k), with each component being 0 or 1.
6We say a k-string is not attainable or it is a forbidden pattern at I = {i1 < · · · < id+1}, if it is not contain in{(
ϕ(zi1 ), · · · , ϕ(zid+1

)
)
: ϕ ∈ Φ

}
.

7When n ≤ d,
∑d

k=0

(n
k

)
= 2n, so the bound in fact holds for all n.

8In other word, we choose a pattern that cannot be produced by zi1 , · · · , zid+1
, for each d+ 1 subset of z1, · · · , zn.
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First, consider the what happen at 1-st component. There are three possibility, e.g.

{(∗, 1, 0, ∗, · · · )}
{(∗, ∗, 1, ∗, · · · )}
{(1, 0, ∗, 0, · · · )}
{(0, 0, 1, ∗, · · · )}
{(0, ∗, ∗, 1, · · · )}
· · ·

and we thus consider:

S0 :=
⋃

wI is 0 at 1-st
E(wI)

S1 :=
⋃

wI is 1 at 1-st
E(wI)

S2 :=
⋃

no restriction at 1-st
E(wI)

Now for each wI having 1 at 1-st component, we change its 1-st 1 to 0 to obtain w′
I , and get S′

1 =
⋃

E(w′
I).

From definition, we have

|S′
1| = |S1|, S0 ∩ S1 = ∅, |S2 ∩ S1| = |S2 ∩ S′

1|

and therefore we have |S0 ∪ S1 ∪ S2| ≥ |S0 ∪ S′
1 ∪ S2|.

Apply this procedure to each place, we can finally have each pattern wnew
I being the d+ 1-string (0, · · · , 0),

and thus

|{not attainable n-string}| ≥
∣∣∣∣∣⋃
I
E(wI)

∣∣∣∣∣ = |S0 ∪ S1 ∪ S2| ≥ |S0 ∪ S′
1 ∪ S2|

≥ · · ·

≥

∣∣∣∣∣⋃
I
E(wnew

I )

∣∣∣∣∣
=

n∑
k=d+1

(
n

k

)

Therefore NΦ(z1, · · · , zn) ≤ 2n −
∑n

k=d+1

(
n
k

)
=
∑d

k=0

(
n
k

)
.

Corollary 3.7 Combining inequalities 3.1, 3.2 and
∑d

k=0

(
n
k

)
≤
(
en
d

)d
= O(nd), we finally have

P

(
sup
ϕ∈Φ

∣∣∣∣∣ 1n
n∑

i=1

ϕ(zi)− Ez [ϕ(z)]

∣∣∣∣∣ ≥ ϵ

)
≤ 2

(
2en

d

)d

e−
nϵ2

8

Definition 3.8 Define the VC dimension of F to be the maximal d such that NΦ(d) = 2d. If there is no
such d, the VC dimension of F is defined to be +∞.

In other word, if we assume F has VC-dimension d, then there exist z1, · · · , zd satisfying NΦ(z1, · · · , zd) = 2d,
and for all z1, · · · , zd+1 drawn from D, NΦ(z1, · · · , zd+1) < 2d+1.
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4.1 VC Theory (Cont’d)

4.1.1 VC Theorem

Theorem 4.1 (VC Theorem) For function space F with VC-dimension d, with probability at least 1− δ
over the random draw of training data,

PD(y 6= f(x)) ≤ PS(y 6= f(x)) +O

√d ln n
d + ln 1

δ

n


holds uniformly for all f ∈ F .

Proof: By Corollary 3.7 in Lecture 3,

P

(
sup
f∈F
|PS(y 6= f(x))− PD(y 6= f(x))| ≥ ε

)
≤
(

2en

d

)d
e−cnε

2

Let δ =
(

2en
d

)d
e−cnε

2

, then

ε =

√
d ln n

d + ln 1
δ + 2d

cn
= O

√d ln n
d + ln 1

δ

n


Therefore, with probability at least 1− δ over the random draw of training data,

PD(y 6= f(x)) ≤ PS(y 6= f(x)) + ε

= PS(y 6= f(x)) +O

√d ln n
d + ln 1

δ

n


holds for all f ∈ F .

Note that this inequality holds uniformly for all f ∈ F , which implies that the bound of the deviation of the
two probabilities given by this theorem is a ‘worst case guarantee’, or an algorithm independent bound.

4-1
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Further, consider ERM(Empirical Risk Minimization) function on training data

f̂ := arg min
f∈F

PS(y 6= f(x))

and the optimal classifier on the distribution

f∗ := arg min
f∈F

PD(y 6= f(x))

Applying the Theorem above, we immediately have a bound of the difference between the error of the two
classifiers.

Theorem 4.2

PD(y 6= f̂(x)) ≤ PD(y 6= f∗(x)) +O

√d ln n
d + ln 1

δ

n


Proof:

PD(y 6= f̂(x)) ≤ PS(y 6= f̂(x)) +O

√d ln n
d + ln 1

δ

n


≤ PS(y 6= f∗(x)) +O

√d ln n
d + ln 1

δ

n


≤

PD(y 6= f∗(x)) +O

√d ln n
d + ln 1

δ

n

+O

√d ln n
d + ln 1

δ

n


= PD(y 6= f∗(x)) +O

√d ln n
d + ln 1

δ

n



We also wonder if PS(y 6= f(x)) +O

(√
d ln n

d+ln 1
δ

n

)
is a tight upper bound of PD(y 6= f(x)). The answer to

this question is positive, as the equality cases have been found.

4.1.2 VC dimension

To calculate the VC dimensions, we have to find a number d, so that there exists a set of d points which can
be shattered by the classifiers, and any set of d+ 1 set can’t be shattered. As a example, we introduce the
VC dimension of linear classifiers below.

Theorem 4.3 For F =
{

sgn
(
wTx+ b

)
| w ∈ Rd, b ∈ R

}
, dF = d+1. For F∗ =

{
sgn

(
wTx

)
| w ∈ Rd

}
, dF∗ =

d.

Proof: Let x1 = (1, 0, 0, . . . , 0), x2 = (0, 1, 0, . . . , 0), . . . , xd = (0, 0, . . . , 0, 1), xd+1 = (0, 0, . . . , 0). Then we
have:

NF (x1, . . . , xd+1) =
∣∣{(sgn (w1 + b) , . . . , sgn (wd + b) , sgn(b)) | w ∈ Rd, b ∈ R

}∣∣ = 2d+1
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Thus dF ≥ d+ 1. Next we show dF < d+ 2, which indicates that dF = d+ 1.

∀x1, . . . , xd+2 ∈ Rd, (x1, 1) , . . . , (xd+2, 1) are linear dependent. So there exists c1, . . . , cd+2, s.t

c1 (x1, 1) + . . .+ cd+2 (xd+2, 1) = 0

Let cd+2 = 1, then ∀w ∈ Rd, b ∈ R,

wTxd+2 + b =

d+1∑
i=1

(−ci)
(
wTxi + b

)
Assume that (sgn (c1) , . . . , sgn (cd+1) , 1) ∈ {(f (x1) , . . . , f (xd+2) | f ∈ F} . Then ∃w ∈ Rd, b ∈ R, s.t.
wTxi + b and ci have the same sign(1 ≤ i ≤ d + 1), and sgn

(
wTxd+2 + b

)
= 1, which is contradictory to

wTxd+2 + b =
∑d+1
i=1 (−ci)

(
wTxi + b

)
< 0.

Thus (sgn (c1) , . . . , sgn (cd+1) , 1) /∈ {(f (x1) , . . . , f (xd+2) | f ∈ F} , and NF (x1, . . . , xd+2) < 2d+2. So dF =
d+ 1. Proof for F∗ is similar.

Additionally, for binary classifiers, the VC dimension of Φ is equal to the VC dimension of F .

Theorem 4.4 f ∈ F are binary classifiers, let Φ = {φf (z) = I[y 6= f(x)] | f ∈ F}, then dΦ = dF .

Proof: Let dΦ = d, by definition we have NΦ(d + 1) < 2d+1, NΦ(d) = 2d. We notice that f(x) = φf (x, 0),
so we have:

NF (x1, . . . xd+1) = NΦ ((x1, 0) , . . . , (xd+1, 0)) ≤ NΦ(d+ 1) < 2d+1

Then dF < d+ 1.

Since dΦ = d, ∃ (x1, y1) , . . . , (xd, yd) , s.t. ∀w ∈ {0, 1}d,∃f ∈ F , (φf (x1, y1) , . . . , φf (xd, yd)) = w, which
implies that:

(f (x1) + y1, . . . , f (xd) + yd) ≡ −w(mod2)⇒ (f (x1) , . . . , f (xd)) ≡ −w + (y1, . . . , yd) (mod2)

∀w ∈ {0, 1}d, let w′ = −w + (y1, . . . , yd) ,∃f ∈ F , s.t. (f (x1) , . . . , f (xd)) ≡ −w′ + (y1, . . . , yd) = w(mod2).
Then (f (x1) , . . . , f (xd)) = w. Thus NF (d) = 2d, dF = d.

4.2 Practical Learning Algorithms

4.2.1 Linear Classfier

A linear classifier on Rd is defined as F = {sgn(w>x+b) : w ∈ Rd, b ∈ R}. Consider how to decide if a dataset
is linear separable. That is, for X = Rd,Y = {±1}, given (xi, yi)

n
i=1, decide if ∃f ∈ F , s.t.

∑
i I[f(xi) 6=

yi] = 0. In this specific problem, that’s to say to decide if ∃w ∈ Rd, b ∈ R, s.t.yi(w>xi + b) >= 0(∀i ∈ [n]).
To solve this question efficiently, we can use the following linear programming(LP).

max
w,b,t

t

s.t. yi(w
>xi + b) ≥ t i ∈ [n]

When t > 0, it’s separable, since t is the minimum of all yi(w
>xi + b). For a separable training set, there

might be many classifiers, to find the best one, we try to maximize the minimal distance.
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max
w,b,t

t

s.t. yi(w
>xi + b) ≥ t i ∈ [n]
‖w‖2 = 1

However this is neither a LP nor a QP(quadratic programming), we can’t solve it directly with an efficient
algorithm. Fortunately, the following QP is equivalent to that.

min
w,b,t

1
2‖w‖

2

s.t. yi(w
>xi + b) ≥ 1 i ∈ [n]

The equivalence mentioned above could be obvious, i.e, if we divide the former inequation by t, and adjust the
objective to min 1/t,through some trivial substitution, the former one could have an equivalence relation
with the latter one.

4.3 Appendix: Game Theory

In this section, we’ll mainly talk about fundamental game theory. Game theory is the study of mathematical
models of strategic interaction among rational decision-makers.Two-player Matrix Game is a simple model
of game theory thus we address it as an introduction. We only consider zero-sum games, in which each
participant’s gains or losses are exactly balanced.

In the first step, we consider two players —— Alice and Bob —— choosing pure strategies when playing a
zero-sum game. We’ll find that the later mover will take advantage, which correspond to our intuition.

However, in the second step, our intuition is not that reliable. The game based on mixed strategy seems to
come to an equilibrium point, making the later mover no longer take advantage at all.

Modern game theory began with the idea of mixed-strategy equilibria in two-person zero-sum games and
its proof by John von Neumann. Von Neumann’s original proof used the Brouwer fixed-point theorem
on continuous mappings into compact convex sets, which became a standard method in game theory and
mathematical economics.

In the 1950s, John Nash developed a criterion for mutual consistency of players’ strategies known as the
Nash equilibrium, applicable to a wider variety of games than the criterion proposed by von Neumann. Nash
proved that every finite n−player, non-zero-sum (not just two-player zero-sum) non-cooperative game has a
Nash equilibrium.

At the end of the notes, we’ll talk about Sion’s minimax theorem, which is a generalization of John von
Neumann’s minimax theorem.

So here we go. First of all, we define what a Two-player Matrix Game is.

Definition 4.5 (Two-player Matrix Game) Let Alice and Bob are two players, M = ((aij , bij))r×c is a
matrix where every element is a pair of numbers (aij , bij) ∈ R2. Alice choose a row i while Bob choose a
column j. Then the number aij and bij is the feedback of Alice and Bob respectively. Notice that M is known
to Alice and Bob before making choices.

As mentioned above, we only talk about Zero-sum Game. Here is its conception.
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Definition 4.6 (Zero-sum Game) The matrix M is defined as above, if ∀i ∈ [1..r], j ∈ [1..c], we have
aij + bij = 0, then we call the Two-player Matrix Game is a Zero-sum Game.

That is to say, the benefit of one side of the opponent participating in the game process must mean the loss
of the other side, so the sum of the gain and loss of both sides of the game must be zero. So M can be
simplified to M = (mij)r×c, where mij ∈ R indicates Alice should pay mij to Bob. Naturally, Alice want to
minimize mij while Bob want to maximize it.

In order to maximize their own interests, both sides usually choose certain strategy.

Under each given information, if only one specific strategy can be selected, we call the strategy is a pure
strategy. In the Two-player Matrix Game (if Alice go first), that is to say:

step 1: Alice choose a determined row i;

step 2: Bob observed Alice’s strategy.According to information about M and Alice’s strategy, Bob choose a
determined column j;

step 3: Alice pays mij to Bob.

Then we say Alice and Bob use pure strategy.

If Alice go first, she always assume that if she choose row i, Bob will choose column ji s.t. miji = max
j
mij .

So a natural strategy for Alice is to choose a row i0 to minimize max
j
mij . In this case, Alice’s aim is

min
i

max
j
mij .

In the same way, if Bob go first, Bob will choose a column j0 to maximize min
i
mij . So Alice’s aim is

max
j

min
i
mij .

We may ask: if the later mover will take advantage? i.e. ∀ given M , if we have min
i

max
j
mij > max

j
min
i
mij?

Intuitively, that’s true. Because when Bob go first, as long as Alice always choose row i0 (no matter what
Bob choose), her loss cannot beyond min

i
max
j
mij . In mathematical language, that is to say min

i
max
j
mij =

max
j
mi0j > mi0j0 > min

i
mij0 = max

j
min
i
mij . And we know the inequality sign can be obtained for some

M , e.g M :=

(
−1 1
1 −1

)
.

So much for pure strategy. Here we come to mixed strategies where the players can choose a probability
distribution on the pure strategies.

When Alice chooses the distribution vector ~p = (p1, p2, ..., pr) ∈ [0, 1]r and Bob chooses ~q = (q1, q2, ..., qc) ∈
[0, 1]c where ||~p|| = ||~q|| = 1. The expectation of the value (In other words, Alice’s loss or Bob’s reward) is
~pTM~q. Obviously Alice’s aim is to choose mixed strategy ~p0 and get min

~p
max
~q
~pTM~q if she go first; Bob will

choose mixed strategy ~q0 and the expectation of the value will be max
~q

min
~p
~pTM~q if he go first. Similarly, we

have min
~p

max
~q
~pTM~q = max

~q
~pT0 M~q > ~pT0 M~q0 > min

~p
~pM~q0 = max

~q
min
~p
~pTM~q. It seems that the later mover

will take advantage. However, the theorem given by John von Neuman conflict to our intuition, it tells us
that there is no difference between go first and later.

Theorem 4.7 min
~p

max
~q
~pTM~q = max

~q
min
~p
~pTM~q.

The theorem can be proved via Brouwer’s fixed point theorem or Farkas’ lemma. In this course, however,
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we’ll present a proof with the knowledge of machine learning.

Theorem 4.8 (Sion’s Minimax Theorem) Suppose f(x, y) is continuous, ∀x ∈ X , f(x, y) is concave,
∀y ∈ Y, f(x, y) is convex. Then

min
x∈X

max
y∈Y

f(x, y) = max
y∈Y

min
x∈X

f(x, y)

Furthermore, if optimal value of the left-hand side is achieved at (x1, y1), and right-hand side is achieved
at (x2, y2), then consider (x∗, y∗) := (x1, y2), we have f(x1, y1) ≤ f(x∗, y∗) ≤ f(x2, y2), which means
f(x1, y1) = f(x∗, y∗) = f(x2, y2), implying the optimal value of both sides can be achieved at the same
point (x∗, y∗). If the condition changes to ”strictly concave” and ”strictly convex”, then the optimal point
is unique.

From the optimality, it’s clear to see that ∀x, f(x, y∗) ≥ f(x∗, y∗), ∀y, f(x∗, y) ≤ f(x∗, y∗). So (x∗, y∗) is a
saddle point of this function.

Imagine two players A and B play a game on this function, A wants to minimize the left-hand side and B
wants to maximize the other side, (x∗, y∗) is the strategy of players, then this strategy is a equilibrium of
the game, which means both A and B can’t gain a better utility if one changes its strategy while the other
stays still.

John Nash proved that for a finite game with at least 2 players, there exists a mixed Nash equilibrium.
However, computing the equilibrium in general case isn’t easy. It’s proved to be a PPAD-complete question.
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5.1 Linear Separability

Last week we consider linear classifiers as

F = {sgn(〈w, ·〉+ b)|w ∈ Rd, b ∈ R} (5.1)

then we formulate the optimization of the problem into a linear programming

min
w,b

1
2‖ w ‖

2

subject to yi(w
Txi + b) ≥ 1

(5.2)

5.2 Lagrange Duality

We consider an optimization problem:

(P ) min
x

f(x)

subject to gi(x) ≤ 0, i = 1, 2, ...,m

hj(x) = 0, j = 1, 2, ..., n

(5.3)

where f(x) and gi(x) are convex functions, and hi(x) are linear.

Let

L(x, λ, µ) = f(x) +

m∑

i=1

λigi(x) +

n∑

j=1

µjhj(x). (5.4)

Then the problem is equivalent to
min
x

max
λ≥0,µ

L(x, λ, µ). (5.5)

For fixed x, L(x, λ, µ) is linear with respect to λ and µ, thus a concave function. For fixed λ ≥ 0 and µ,
since f(x) and gi(x) are convex functions and hi(x) are linear, L(x, λ, µ) is a convex funtion with respect to
x. Then by Sion’s Minimax Theorem we know that

min
x

max
λ≥0,µ

L(x, λ, µ) = max
λ≥0,µ

min
x
L(x, λ, µ). (5.6)

Then, given λ and µ, we need to find x to minimize L(x, λ, µ). Such x should satisfy

∂L

∂x
= 0, (5.7)

5-1
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from which we can express x as a function of λ and µ:

x = ϕ(λ, µ). (5.8)

Then the primal problem P becomes another optimization problem D:

(D) max
λ,µ

L(ϕ(λ, µ), λ, µ)

subject to λi ≥ 0, i = 1, 2, ...,m
(5.9)

We call D the dual of P .

5.3 Apply to Linear Classifier

Let’s return to problem 5.2. Now we have the optimization problem D, using 5.7, we have

L(w, b, λ) :=
1

2
‖w‖2 +

n∑

i=1

λi
(
1− yi

(
w>xi + b

))
(5.10)

Applying the Lagrange optimization to 5.10 we get

∂L

∂w
=

1

2
× 2w −

n∑

i=1

λiyixi = 0 (5.11)

and
∂L

∂b
= −

n∑

i=1

λiyi = 0 (5.12)

so we get

w =

n∑

i=1

λiyixi (5.13)

and
n∑

i=1

λiyi = 0 (5.14)

Now we use these result to 5.10, finally we have

min
λ

1

2

n∑

i=1

n∑

j=1

λiλjx
T
i xj −

n∑

i=1

λi (5.15)

subject to

n∑

i=1

λiyi = 0, 0 ≤ λi ≤ C (5.16)

5.4 KKT Condition

Given general problem:
min
x

f(x)

subject to gi(x) ≤ 0, i = 1, . . .m
hj(x) = 0, j = 1, . . . n

(5.3)
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We have the Lagrangian function:

L(x, λ, µ) := f(x) +

m∑

i=1

λigi(x) +

n∑

j=1

µjhj(x) (5.4)

and the Lagrange dual function:

g(λ, µ) := min
x
L(x, λ, µ) (5.17)

The subsequent dual problem is:
max
λ,µ

g(λ, µ)

subject to λ ≥ 0
(5.18)

The Karush-Kuhn-Tucker conditions or KKT conditions for (x∗, λ∗, µ∗) are:

(1) Stationarity: 5xL|x∗,λ∗,µ∗ = 0.

(2) Primal feasible: ∀i, gi(x∗) ≤ 0; ∀j, hj(x∗) = 0.

(3) Dual feasible: ∀i, λi ≥ 0.

(4) Complementary slackness: ∀i, λ∗i gi(x∗) = 0.

Then we have the following theorem:

Theorem 5.1 x∗, λ∗ and µ∗ are primal and dual solutions if and only if they satisfy the KKT conditions.

Proof:
The proof for necessity is trivial, we just prove its sufficiency.
Notice that

g (λ∗, µ∗) = f (x∗) +

m∑

i=1

λ∗i gi (x∗) +

n∑

j=1

µ∗jhj (x∗)

= f (x∗)

where the first equality holds from stationarity, and the second holds from complementary slackness.
Then, due to the duality (here ∀λ, µ, x, g(λ, µ) ≤ f(x)) between the primary and dual problem, x∗, λ∗ and
µ∗ are primal and dual solutions.

5.5 Support Vector Machine

Assume training data is linear separable, we hope SVM can maximize the margin. It means:

min
w,b

1
2‖ w ‖

2

subject to yi(w
Txi + b) ≥ 1

(5.2)

Its Lagrange multiplier is:

L(w, b, λ) :=
1

2
‖w‖2 +

n∑

i=1

λi
(
1− yi

(
w>xi + b

))
(5.10)
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Consider its KKT condition. By stationary and complementary slackness, we have:

w∗ =

n∑

i=1

λ∗i yixi (5.19)

and

λ∗i (yi
(
w∗>xi + b∗

)
− 1) = 0 (5.20)

So w∗ is a linear combination of yixi, with weights λis. And, it can be observed that only the points closest
to the margin can satisfy the condition yi

(
w∗>xi + b∗

)
− 1 = 0. So only the λis corresponding to these

points can be positive, while other λis are all zero. That is to say, these few points that are closest to the
margin decide w∗, and the whole SVM model, and we call these points support vectors (note that SVM is
just the abbr. of support vector machine!).
So the dual problem matters. It is not because it helps to calculate the solutions, but that it provides insight
into this model.

5.6 Soft Margin SVM

In many scenarios, the training data is linearly inseparable. We can solve this problem by allowing the SVM
to fail at certain points. Specifically, we introduce Soft Margin SVM.

min
w,b,ε

1

2
‖ w ‖2 + C

n∑

i=1

εi(C is a fixed constant) (5.21)

subject to yi(w
Txi + b) ≥ 1− εi (5.22)

The Lagrangian duality is as follows:
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min
λ

1

2

n∑

i=1

n∑

j=1

λiλjx
T
i xj −

n∑

i=1

λi (5.23)

subject to

n∑

i=1

λiyi = 0, 0 ≤ λi ≤ C (5.24)

The detailed derivation process is given below:

Let gi = 1− εi − yi(wTxi + b), g̃i = −εi.The constraint condition is gi ≤ 0, g̃i ≤ 0.

min
w,b,ε

max
λ,µ

L(w, b, ε, λ, µ) (5.25)

s.t.λi ≥ 0, µi ≥ 0 (5.26)

where L(w, b, ε;λ, µ) =
1

2
‖ w ‖2 + C

n∑

i=1

εi +

n∑

i=1

λigi +

n∑

i=1

µig̃i (5.27)

For fixed λ, µ, find w∗, b∗, ε∗ to minimize L.

Here we have,

∂L

∂wi
= wi −

n∑

j=1

λjyjxji = 0 (5.28)

∂L

∂b
= −

n∑

i=1

λiyi = 0 (5.29)

∂L

∂εi
= C − λi − µi = 0 (5.30)

then

L(w∗(λ, µ), b∗(λ, µ), ε∗(λ.µ);λ, µ) =
1

2
‖ w∗ ‖2 + C

n∑

i=1

εi +

n∑

i=1

λigi +

n∑

i=1

µig̃i (5.31)

=
1

2
‖ w∗ ‖2 + C

n∑

i=1

εi +

n∑

i=1

λi[1− εi − yi(w∗Txi + b)]−
n∑

i=1

µiεi (5.32)

=
1

2
‖

n∑

i=1

λiyixi ‖
2

+ C

n∑

i=1

εi +

n∑

i=1

λi[1− εi − yi(
n∑

j=1

λjyjx
T
j xi + b)]−

n∑

i=1

µiεi (5.33)

=
1

2

n∑

i=1

n∑

j=1

λiλjyiyjx
T
i xj + C

n∑

i=1

εi +

n∑

i=1

λi −
n∑

i=1

λiεi −
n∑

i=1

n∑

j=1

λiλjyiyjx
T
i xj −

n∑

i=1

λiyib−
n∑

i=1

µiεi (5.34)

=− 1

2

n∑

i=1

n∑

j=1

λiλjyiyjx
T
i xj +

n∑

i=1

(C − λi − µi)εi +

n∑

i=1

λi − b
n∑

i=1

λiyi (5.35)

=− 1

2

n∑

i=1

n∑

j=1

λiλjyiyjx
T
i xj +

n∑

i=1

λi(where

n∑

i=1

λiyi = 0, 0 ≤ λi = C − µi ≤ C) (5.36)

So we get the dual form as 5.23.
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5.6.1 Kernel Methods Basics

In addition to performing linear classification, SVMs can efficiently perform a non-linear classification using
kernel methods, implicitly mapping their inputs into high-dimensional feature spaces. The idea is to define
a function Φ : X −→ H, which maps input x into a Hilbert space1 H (called a feature space), expecting that
Φ(x) becomes linearly separable in H. However, noticing that xi, xj only appear in pairs as an inner product
in the dual of the optimization problem of SVM (see equation 5.23), we only need to define a kernel function

K(x, x′) = 〈Φ(x),Φ(x′)〉. (5.37)

This eliminates the need of explicitly calculating the function Φ(x), which can be inefficient and sometimes
even impossible (if dimH =∞).

Kernel methods are often illustrated by the XOR example. The data in Figure 5.1 (a) is clearly not linearly
separable. But we can map the data into another space with the function

Φ(x) = (
√

2x1x2,
√

2x1). (5.38)

The mapped points are shown in Figure 5.1 (b) and become linearly separable.
6.2 Positive definite symmetric kernels 109
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Figure 6.3
Illustration of the XOR classification problem and the use of polynomial kernels. (a) XOR problem
linearly non-separable in the input space. (b) Linearly separable using second-degree polynomial
kernel.

dimension 6:

∀x,x′ ∈ R2, K(x,x′) = (x1x
′
1 + x2x

′
2 + c)2 =




x2
1

x2
2√

2x1x2√
2c x1√
2c x2

c




·




x′21
x′22√

2x′1x
′
2√

2c x′1√
2c x′2
c




. (6.4)

Thus, the features corresponding to a second-degree polynomial are the original

features (x1 and x2), as well as products of these features, and the constant feature.

More generally, the features associated to a polynomial kernel of degree d are all

the monomials of degree at most d based on the original features. The explicit

expression of polynomial kernels as inner products, as in (6.4), proves directly that

they are PDS kernels.

To illustrate the application of polynomial kernels, consider the example of fig-

ure 6.3a which shows a simple data set in dimension two that is not linearly sep-

arable. This is known as the XOR problem due to its interpretation in terms of

the exclusive OR (XOR) function: the label of a point is blue iff exactly one of

its coordinates is 1. However, if we map these points to the six-dimensional space

defined by a second-degree polynomial as described in (6.4), then the problem be-

comes separable by the hyperplane of equation x1x2 = 0. Figure 6.3b illustrates

that by showing the projection of these points on the two-dimensional space defined

by their third and fourth coordinates.

Figure 5.1: Illustration of the XOR classification problem and the use of kernel.

5.7 Boosting

Boosting is a family of learning methods that combines several predictors to create a more accurate one. We
specifically focus on AdaBoost (short for Adaptive Boosting), which has been shown to be very effective in
practice in some scenarios and is based on a rich theoretical analysis.

We first give the algorithm of AdaBoost in Algorithm 1.

The algorithm runs for T rounds. At each round, a new base classifier ht is selected to minimize training
error on S weighted by the distribution Dt. Then the distribution for the next round, Dt+1, is calculated.
Intuitively, Dt+1 is defined from Dt by increasing the weight on i if xi is incorrectly classified, and decreasing
it if xi is correctly classified. After T rounds of boosting, the classifier returned is based on a non-negative
linear combination of the base classifiers ht. More accurate classifiers are assigned a larger weight and less
accurate classifiers are assigned a smaller weight.

(To be continued...)

1A Hilbert space is a vector space equipped with an inner product, and that is complete (all Cauchy sequences are convergent).
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Algorithm 1: AdaBoost algorithm

Input: Sample data S = {(x1, y1), · · · , (xn, yn)}, base learning algorithm A.
Result: A classifier F (x).
Initialize: D1(i) = 1/n, i ∈ [n].
for t = 1, 2, · · · , T do

Use A to learn a base classifier ht(x) on Dt.
εt ←−

∑n
i=1Dt(i)I[yi 6= ht(xi)]

γt ←− 1− 2εt
αt ←− 1

2 ln 1+γt
1−γt

Zt ←− 2[εt(1− εt)]
1
2

Dt+1(i) = Dt(i)·exp (−yiαtht(xi))
Zt

end

Output: F (x) = sgn
[∑T

t=1 αtht(x)
]
.

References

[1] Rostamizadeh.A Mohri.M and TALWALKAR.A. Foundations of Machine Learning. MIT Press, 2012.
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6.1 Soft Margin SVM

Under many circumstances, training data is not linear separable. We can deal with this problem by allowing
the SVM makes mistakes on some of the data. Specifically, we introduce Soft-Margin SVM :

(P ) min
w,b,ξ

1

2
||w||2 + C

n∑
i=1

ξi

s.t. yi(w
Txi + b) ≥ 1− ξi

ξi ≥ 0,∀1 ≤ i ≤ n

(6.1)

Now we try to gain a deeper understanding of soft margin SVM. Denote wTx1 + b as f(xi).

Obviously, (P ) is equivalent to the following problem:

min
w,b

1

2
||w||2 + C

n∑
i=1

[1− yi(wTxi + b)]+

where [u]+ := max(u, 0)

Before further discussion, we introduce some important loss functions. We know that

yif(xi) > 0⇔ the classification is correct

So we can define:

Definition 1 0-1 loss

L0−1 =

{
1, if yif(xi) > 0

0, if yif(xi) < 0

Definition 2 Hinge loss

Lhinge =

{
1− yif(xi), if yif(xi) ≤ 1

0, if yif(xi) > 1

Definition 3 Exponential loss

Lexp = e−yif(xi)

6-1
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There are several important properties:

1. Hinge loss and exponential loss are both upper bounds for the 0-1 loss, which means when we minimize
these two losses, 0-1 loss can be bounded.

2. Hinge loss and exponential loss are convex and continuous.

3. Once a data is classified correctly, its 0-1 loss reaches zero and no longer changes, causing the learning
process to stop. This means yf(x) is near zero. Meanwhile, the hinge loss will push yf(x) to be above
1 and the exponential loss will push yf(x) to infinity, which greatly improve generalization and give
the model much robustness.

Back to our problem: minw,b
1
2 ||w||

2 + C
∑n
i=1[1− yi(wTxi + b)]+.

We can see C
∑n
i=1[1 − yi(wTxi + b)]+ is the hinge loss of the classifier. The other term 1

2 ||w||
2 is the L2

norm of the parameter w, so this is exactly L2 regularization. And now we have another perspective towards
the Soft-Margin SVM : Minimize Surrogate Loss function + Regularization.

6.2 Boosting

Last week we have given the algorithm of AdaBoost.

Some propositions about the algorithm can help to understand why it performs well in practice.

Proposition 6.1 Let f(x) =
T∑
t=1

αtht(x), we have:
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T∏
t=1

Zt =
1

n

n∑
i=1

exp

(
−yi

T∑
t=1

αtht(xi)

)
=

1

n

n∑
i=1

exp (−yif(xi))

Where Zt is normalization factor.

Proof:

ZT =

n∑
i=1

DT (i)exp(−yiαThT (xi))

=

n∑
i=1

DT−1(i)exp(−yiαT−1hT−1(xi))

ZT−1
exp(−yiαThT (xi))

=⇒ ZT−1ZT =

n∑
i=1

DT−1(i)exp (−yiαT−1hT−1(xi)− yiαThT (xi))

Likewise, we can finally get

T∏
t=1

ZT =

n∑
i=1

D1(i)exp

(
−yi

T∑
t=1

αtht(xi)

)

=
1

n

n∑
i=1

exp

(
−yi

T∑
t=1

αtht(xi)

)

Proposition 6.2 For αt and Zt in the algorithm, t ∈ [T ], we have:

αt = argmin
α
Zt

Proof:

min
α
Zt = min

α

n∑
i=1

Dt(i)(e
−yiht(xi))α

According to the definition of classifier, yiht(xi) =

{
1 yi = ht(xi)
−1 yi 6= ht(xi)

So we have
n∑
i=1

Dt(i)(e
−yiht(xi))α = εte

α + (1− εt)e−α ≥ 2
√
εt(1− εt)

The equality holds if and only if

εte
α = (1− εt)e−α ⇐⇒ α =

1

2
ln

1− εt
εt

=
1

2
ln

1 + γt
1− γt

So the proposition is proved, and we greedily assign values to αt and Zt as follows in our AdaBoost algorithm:

αt =
1

2
ln

1 + γt
1− γt
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Zt = 2
√
εt(1− εt)

In Proposition 6.2, we notice that the selection of αt is to minimize Zt. Furthermore, Proposition 6.1 shows
that the product of Zt reflects the exponential loss e−yf(x) of classifier.

Given that the exponential loss is upper bound of the 0-1 loss, if we minimize the exponential loss, then the
0-1 loss decreases accordingly, which means the classifier may work better on the training set.

Then we consider the connections between the updated classifier and the original classifier.

Proposition 6.3
n∑
i=1

Dt+1(i) · I[yi 6= ht(xi)] =
1

2

Proof:

n∑
i=1

Dt+1(i) · I[yi 6= ht(xi)] =

n∑
i=1

Dt(i) · exp(−αt · yiht(xi))
Zt

· I[yi 6= ht(xi)]

=

n∑
i=1

Dt(i) · exp(αt) · I[yi 6= ht(xi)]

n∑
i=1

Dt(i) · exp(αt) · I[yi 6= ht(xi)] +
n∑
i=1

Dt(i) · exp(−αt) · I[yi = ht(xi)]

=
εt exp(αt)

εt exp(αt) + (1− εt) exp(−αt)

The selection of αt is to minimize zt and so we have εt exp(αt) = (1− εt) exp(−αt), thus

n∑
i=1

Dt+1(i) · I[yi 6= ht(xi)] =
1

2

In Proposition 6.3, we notice that the performance of the updated classifier is as same as a random classifier
on the original distribution, so we infer that the optimization directions of different classifiers are orthogonal.

Beyond the intuition, the error rate of the classifier and the speed of algorithm can be estimated.

Proposition 6.4 Assume γt ≥ γ > 0, for t ∈ [T ], then the following inequality holds:

Ps(yf(x) ≤ 0) ≤ (1− γ2)
T
2
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Proof: We have known exponential loss e−yf(x) upper bounds 0-1 loss, so

Ps(yf(x) ≤ 0) =
1

n

n∑
i=1

I[yif(xi) ≤ 0]

≤ 1

n

n∑
i=1

exp(−yif(xi))

=

T∏
t=1

zt =

T∏
i=1

2
√
εt(1− εt)

From the constraint γt ≥ γ > 0, we can infer that 0 ≤ εt ≤ 1−γ
2 < 1

2 , so

2
√
εt(1− εt) ≤ 2

√
1− γ

2
(1− 1− γ

2
)

=
√

1− γ2

Then we have

Ps(yf(x) ≤ 0) ≤
T∏
t=1

2
√
εt(1− εt)

≤
T∏
t=1

√
1− γ2

= (1− γ2)
T
2

Notice that the minimum positive value of Ps(yf(x) ≤ 0) is 1
n . So if (1 − γ2)

T
2 < 1

n , we have Ps(yf(x) ≤
0) = 0, which means the classifier works totally correct on training set S.

To reach that, we only need O(log n) rounds, namely T = O(log n), in the case of γ > 0.

We have discussed in the Proposition 6.3 that the choice of α indicates that each time ht learns some
orthogonal features. By normalizing α, learned f can be seen as the distance of these features to a hyperplane,
which gives a new perspective of AdaBoost that when minimizing exponential loss it maximizes margin like
SVM does.

Proposition 6.5 Suppose (x,y) is a sample from sample space, denote α = (α1,..., αT ) (with
T∑
i=1

αi = 1

and αi > 0) as normal vector of a hyperplane, and h(x) = (h1(x),...,hT (x)) ∈ RT as a data point, then y
f(x) gives a kind of distance from h(x) to the hyperplane {ξ : αξ = 0}.

Hint: L∞ distance.
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6.3 Term Project

6.3.1 Project I: Teaching Dimension of Neural Network

1. Without-Teaching Model: Given a data space X, a hypothesis space F . We can find the VC-
Dimension of F .

2. Teaching Model: Given a data space X, a hypothesis space F . Teacher chooses classifier f ∈ F and
test on Ω ⊆ X. Learner can specify f by Ω.

There are some formal definitions for a hypothesis space C and it’s data space X.

Definition 4 Teaching Dimension of a classifier c in C

TD(c, C) = min
b∈Bc

|b|

where

Bc = {b ⊆ X|∀c′ ∈ C, c′ = c or c′|b 6= c|b}

Definition 5 Worst-case Teaching Dimension

TD(C) = max
c∈C

TD(c, C)

Definition 6 Best-case Teaching Dimension

TDmin(C) = min
c∈C

TD(c, C)

Definition 7 Recursive Teaching Dimension

RTD(C) = max
0≤t≤T

TDmin(Ct)

where

C0 = C, Ct+1 = Ct − {c ∈ Ct|TD(c, Ct) = TDmin(Ct)}

and

T = arg min
t
Ct = ∅

Assignment: Try to calculate teaching dimension of a deep neural network.

References

[1] Quadratic Upper Bound for Recursive Teaching Dimension of Finite VC Classes
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6.3.2 Project II: Certified Robustness

Adversarial examples are inputs to machine learning models designed to intentionally fool them or to cause
mispredictions. One of the threats of adversaries can be modeled as Gradient access.

So far, some countermeasures have been proposed. One of the popular methods is adversarial training, which
repeatedly generates adversarial samples for model training. However, its shortcomings are obvious. It can
only protect against specific attacks, and it also lacks theoretical guarantees.

Assignment: Design an algorithm to reach the state of the art on some data set, for example, MINIST,
FASHION-MINIST, and CIFAR.

References

[1] Towards Certifying l∞ Robustness using Neural Networks with l∞-dist Neurons

[2] https://www.microsoft.com/en-us/research/blog/adversarial-robustness-as-a-prior-for-better-transfer-learning/

6.4 Bagging (Booststrap Aggregating)

6.4.1 Algorithm

• Step 1: Given a standard training set S = {x1, x2, ..., xn}.

• Step 2: Generate a new training set Si = {x(i)1 , x
(i)
2 , ..., x

(i)
n } by drawing with replacement from S;

train the model with Si to obtain a new classifier hi.

• Step 3: Repeat Step 2 N times. Combine the classifiers by mean aggregator: 1
N

N∑
i=1

hi(x).

We can easily notice that Booststrap Aggregating is more effective in the case that the base classifier is
unstable, which means performance varies greatly with data.
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[5] https://en.wikipedia.org/wiki/Bootstrap_aggregating

[6] https://en.wikipedia.org/wiki/Random_forest
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VC Theory focuses on the uniform convergence for all classifiers in hypothesis space F . Specifically, with
probability 1 ´ δ,

PD ď PS ` O

˜

c

d lnn ` ln 1{δ

n

¸

(6.1)

Where PD is the test error w.r.t. f P F , PS is the training error w.r.t. f P F , d is the VC-dim of F .
Notice that the result is independent of the distribution D and the learning algorithm A, and only depends
on the hypothesis space F and sample size n.
However, VC Theory fails to account for the great generalization ability of neural networks. For a neural
network, the number of parameters is usually far greater than that of training data. In such a case, the
generalization bound yielded by VC Theory is scarcely meaningful. Perhaps randomness plays a vital role
behind the huge success of neural networks. After all, stochastic gradient descent (SGD), rather than gradient
descent (GD), is the common method for optimizing neural networks. [1–3]

There are two points of view of statistical inference: Frequentist and Bayesian. Here is a brief comparison:

Frequentist Bayesian
Views of Probability Law of Large Numbers Degree of Belief

Parameters Estimation Maximum Likelihood Estimate
Maximum a posteriori estimation

P pθ|xq “
P px|θqP pθq

P pxq

Output of Learning a classifier f a distribution of classifiers Q
Prior Hypothesis space F distribution of classifiers P

Performance ErrDpfq Ef„QrErrDpfqs

Generalization
VC Theory

uniform convergence
for all classifiers in a hypothesis space

PAC-Bayesian Theory
for all distributions of classifiers

Gap between ErrDpfq and ErrSpfq O

˜

c

d lnn ` lnp1{δq

n

¸

O

˜

c

DpQ}Pq ` lnp3{δq

n

¸

6-1
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In the Frequentist view, the gap between test error and training error only depends on hypothesis space F
and sample size, i.e. w/ prob 1 ´ δ, @h P F ,

ErrDphq ď ErrSphq ` O

˜

c

d lnn ` lnp1{δq

n

¸

Where d “ VCDpFq.

In this section, we are going to present the main theorem of PAC-Bayesian Theory.

Theorem 6.1 (PAC-Bayesian) For any fixed prior distribution of classifiers P, with probability 1´δ over
the random draw of training dataset S of size n, the following inequality holds uniformly for all distributions
(i.e. stochastic classifier) Q:

Eh„QrErrDphqs ď Eh„QrErrSphqs `

c

DKLpQ}Pq ` lnp3{δq

n
(6.2)

Here we denote Ppx,yq„Dry ‰ hpxqs by ErrDphq and Ppx,yq„Sry ‰ hpxqs by ErrSphq, DKL pQ}Pq – Eh„Q

”

ln qpxq

ppxq

ı

is the KL-divergence between Q and P.

Intuitively, since P is independent of the dataset S „ Dn, we can bound the gap between Eh1„P rErrDph1qs

and Eh1„P rErrSph1qs by Chernoff bound, so we only need to bound the gap between Eh„QrErrDphqs and
Eh1„P rErrDph1qs. Before proving the theorem, we list some useful lemmas here.

Lemma 6.2 (Change of Measure) For all distribution P,Q over hypothesis space F and all function
f : F Ñ R, we have

Eh„Qrfphqs ď lnEh1„P

”

efph1q
ı

` DKLpQ}Pq (6.3)

Proof: In fact,

RHS ´ LHS “ lnEh1„P

”

efph1q
ı

` DKL pQ}Pq ´ Eh„Qrfphqs

“ Eh„Q

„

ln
qphq

pphq

ȷ

´ Eh„Qrfphqs ` lnEh1„P

”

efph1q
ı

“ Eh„Q

»

–ln
qphq

pphqefphq

Eh1„Pefph1q

fi

fl

“ DKL

ˆ

Q}
pphqefphq

Eh1„Pefph1q

˙

ě 0

Lemma 6.3 For any δ ą 0,

PS„Dn

”

Eh„P renpErrDphq´ErrSphqq2s ě 3{δ
ı

ď δ (6.4)
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Proof: We begin our proof by considering a bound for a fixed h „ P.

ES„Dn

”

enpErrDphq´ErrSphqq2
ı

ď 3

For simplicity, let ∆ – |ErrDphq ´ ErrSphq|. Using Chernoff bound, we have

PS„Dnr∆ ě εs ď 2 expp´2nε2q

Then,

ES„Dnren∆
2

s “

ż 8

0

PS„Dn

”

en∆
2

ě t
ı

dt

“

ż 8

1

PS„Dn

”

en∆
2

ě t
ı

dt `

ż 1

0

PS„Dn

”

en∆
2

ě t
ı

dt

“

ż 8

1

PS„Dn

«

∆ ě

c

ln t

n

ff

dt ` 1

ď

ż 8

1

2e´2 ln tdt ` 1

“ 3

By applying Markov’s Inequality, we get

PS„Dn

”

Eh„P

”

enpErrDphq´ErrSphqq2
ı

ě 3{δ
ı

“ PS„Dn

”

Eh„P

”

en∆
2
ı

ě 3{δ
ı

ď
ES„Dn

”

Eh„P

”

en∆
2
ıı

3{δ

“
Eh„P

”

ES„Dn

”

en∆
2
ıı

3{δ
(Fubini Theorem)

ď
Eh„P r3s

3{δ
“ δ

Now we can prove PAC-Bayesian Theorem (6.1) by applying Jensen’s Inequality.
With probability 1 ´ δ,

pEh„QrErrDphq ´ ErrSphqsq2 ď
1

n
Eh„Q nrErrDphq ´ ErrSphqs

2

ď
1

n

´

lnEh1„P

”

en∆
2
ı

` DKLpQ}Pq

¯

ď
1

n
plnp3{δq ` DKLpQ}Pqq

Thus,

Eh„QrErrDphqs ď Eh„QrErrSphqs `

c

DKLpQ}Pq ` lnp3{δq

n

Lemma 6.4 For any fixed h „ P, we have

ES„Dn

”

enDBpErrSphq} ErrDphqq
ı

ď n ` 1 (6.5)
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Proof: For simplicity, we denote ErrDphq by p, ErrSphq by p̂S . Since P is the prior, h is independent of S.
Therefore,

ES„Dn

”

enDBpErrSphq} ErrDphqq
ı

“ ES„Dn

”

enDBpp̂S}pq
ı

“ ES„Dn

«

ˆ

p̂S
p

˙np̂S
ˆ

1 ´ p̂S
1 ´ p

˙np1´p̂Sq
ff

Note that S „ Dn implies
řn

i“1 Iryi ‰ hpxiqs „ Bpn, pq, so the equation above can be rewritten as:

ES„Dn

«

ˆ

p̂S
p

˙np̂S
ˆ

1 ´ p̂S
1 ´ p

˙np1´p̂Sq
ff

“

n
ÿ

k“0

ˆ

n

k

˙

pk p1 ´ pq
n´k

ˆ

k{n

p

˙npk{nq ˆ

1 ´ k{n

1 ´ p

˙np1´k{nq

“

n
ÿ

k“0

ˆ

n

k

˙ ˆ

k

n

˙k ˆ

1 ´
k

n

˙n´k

ď

n
ÿ

k“0

˜

ˆ

n

0

˙ ˆ

k

n

˙0 ˆ

1 ´
k

n

˙n´0

`

ˆ

n

1

˙ ˆ

k

n

˙1 ˆ

1 ´
k

n

˙n´1

` ¨ ¨ ¨

`

ˆ

n

k

˙ ˆ

k

n

˙k ˆ

1 ´
k

n

˙n´k

` ¨ ¨ ¨ `

ˆ

n

n

˙ ˆ

k

n

˙n ˆ

1 ´
k

n

˙n´n
¸

“

n
ÿ

k“0

n
ÿ

r“0

ˆ

n

r

˙ ˆ

k

n

˙r ˆ

1 ´
k

n

˙n´r

“

n
ÿ

k“0

ˆ

k

n
`

ˆ

1 ´
k

n

˙˙n

“ n ` 1

Using Lemma 6.4, we can get a better result:

Theorem 6.5 With probability 1 ´ δ,

DB pEh„QrErrSphqs}Eh„QrErrDphqsq ď
1

n

ˆ

DBpQ}Pq ` ln

ˆ

n ` 1

δ

˙˙

(6.6)

Proof: For fixed h1 „ P, by applying Markov Inequality and Lemma 6.4, we have

PS„Dn

„

Eh1„P

”

enDBpErrSph1q} ErrDph1qq
ı

ě
n ` 1

δ

ȷ

ď
Eh1„P

”

ES„Dn

”

enDBpErrSph1q} ErrDph1qq
ıı

n ` 1

δ

ď
n ` 1
n`1
δ

“ δ
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Since DBp¨}¨q is convex, by Lemma 6.2 and Jensen’s Inequality, with probability 1 ´ δ,

DBpEh„QrErrSphqs}Eh„QrErrDphqsq ď Eh„QrDBpErrSphq}ErrDphqqs

“
1

n
Eh„Q rnDBpErrSphq}ErrDphqqs

ď
1

n

´

ln
´

Eh1„P

”

enDBpErrSph1q} ErrDph1qq
ı¯

` DKLpQ}Pq

¯

ď
1

n

ˆ

ln

ˆ

n ` 1

δ

˙

` DKLpQ}Pq

˙

Thus proving the claim.

Now we will apply PAC-Bayesian Theory to linear classifiers. Suppose Q is a distribution over classifiers, let
us define a deterministic voting classifier gQpxq

gQpxq “ sgnpEh„Qhpxqq (6.7)

We have the following proposition:

Proposition 6.6

ErrDpgQq ď 2Eh„QrErrDphqs (6.8)

Proof: For each point px, yq „ D, gQpxq ‰ y implies that at least half of hs in Q satisfy hpxq ‰ y, which
leads to the conclusion that ErrDpgQq ď 2Eh„QrErrDphqs.

Now we consider linear classifiers hpxq “ sgnpwJx ` bq, x P Rd, y P t˘1u,w P Rd, b P R.
If we assume P “ UpSd´1q, the spherical integral of DKLpQ}Pq would be complicated to compute. Alter-
natively, we assume P “ N p0, Idq,Q “ N pµw, Idq, here }w}2 “ 1 and µ is a scale factor. According to
PAC-Bayesian Theorem (6.1), we have

ErrDpgQq ď 2

«

ErrSpN pµw, Idqq `

c

DKLpQ}Pq ` lnp3{δq

n

ff

(6.9)

It suffices to determine DKLpQ}Pq and ErrSpN pµw, Idqq respectively.
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6.4.1 Determine DKLpQ}Pq

DKLpQ}Pq “

ż

Rd

1
`?

2π
˘d

exp

„

´
1

2
}x ´ µw}

2

ȷ

1

2

´

}x}
2

´ }x ´ µw}
2
¯

dx

“

ż

Rd

1
`?

2π
˘d

exp

„

´
1

2
}x ´ µw}

2

ȷ ˆ

µwJx ´
1

2
µ2

˙

dx

“ ´
1

2
µ2 `

ż

Rd

1
`?

2π
˘d

exp

„

´
1

2
}x ´ µw}

2

ȷ

`

µwJpx ´ µwq ` µ2
˘

dx

“
1

2
µ2 ` µ

ż

Rd

pwJxq
1

`?
2π

˘d
exp

„

´
1

2
}x}

2

ȷ

dx

“
1

2
µ2 ` µwJEx„P rxs

“
1

2
µ2

6.4.2 Determine ErrSpN pµw, Idqq

For a fixed point px, yq and a classifier h „ N pµw, Idq, with the intuition from the figure above, we have

yxJh

}x}
„ N

ˆ

yxJpµwq

}x}
,
y2xJx

}x}2

˙

“ N
ˆ

yµpwJxq

}x}
, 1

˙

So

ErrSpN pµw, Idqq “ Ph„N pµw,Idq

«

y
`

xJh
˘

}x}
ă 0

ff

“ sΦ

ˆ

yµpwJxq

}x}

˙
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Here, Φptq “

ż t

´8

1
?
2π

e´ x2

2 dx, sΦptq “ 1 ´ Φptq.

6.4.3 Putting them together

By PAC-Bayesian Theorem (6.1), for SVM model

Eh„QrErrDphqs ď Eh„QrErrSphqs `

d

DKLpQ}Pq ` ln 3
δ

n

“ ES„Dn

«

sΦ

˜

yµ
`

wJx
˘

}x}

¸ff

`

d

µ2

2 ` ln 3
δ

n

Therefore, with probability at least 1´ δ over the random draw of n training data, for all µ and w, we have

ErrDpgQq ď 2

»

–ES„Dn

«

sΦ

˜

yµ
`

wJx
˘

}x}

¸ff

`

d

µ2

2 ` ln 3
δ

n

fi

fl

By optimizing the value of µ, we have

ErrDpgQq ď 2 inf
µą0

$

&

%

»

–ES„Dn

«

sΦ

˜

yµ
`

wJx
˘

}x}

¸ff

`

d

µ2

2 ` ln 3
δ

n

fi

fl

,

.

-

Since the Gaussian tail probability is monotonically decreasing w.r.t. µ and µ2{2n is monotonically increasing
w.r.t. µ, we cannot determine the monotonicity of the bound. Intuitively, the Gaussian tail probability will
be small if the margin is large, thus the larger the margin is, the tighter the bound will be, which means the
generalization ability of SVM will be good when it has a large margin.
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8.1 Term Project 3

Deep learning has a large number of parameters, which often exceed the number of data. Therefore, the
generalization of deep learning is a problem worth studying. Read the paper Uniform Convergence May be
unable to Explain the Generalization in deep learning. If agree with the article, trying to construct general
case; Give reasons for disagreeing.

8.2 Algorithmic Stability and Generalization

Definition 8.1 (Uniform Stability) Let A be a learning algorithm. S = (z1, · · · , zn) be a training dataset.
Let Si = (z1, · · · , zi−1, z

′
i, zi+1, · · · , zn) denote a neighboring dataset. Let A(S) denote a classifier learned by

A from S. Let ℓ(·, ·) be a loss function.

A learning algorithm A is said to have uniform stability β with respect to loss ℓ(·, ·), if ∀S, ∀i,∀Si,∀z,

|ℓ(A(S), z)− ℓ(A(Si), z)| ≤ β

Theorem 8.2 (Uniform stability implies generalization) Define the risk (similar to test error) as fol-
lows,

R(A(S)) = Ez∼D[ℓ(A(S), z)]

And define the empirical risk (similar to training error) as follows,

Remp(A(S)) =
1

n

n∑
i=1

ℓ(A(S), zi)

Then assume |ℓ(·, ·)| ≤M , we have

P(R(A(S))−Remp(A(S)) ≥ β + ϵ) ≤ exp

(
−nϵ2

2(nβ +M)2

)
The proof of 8.2 is based on the following lemmas.

Lemma 8.3 Suppose A is symmetric with respect to (z1, · · · , zn), i.e. for any permutation σ, A(z1, · · · , zn) =
A(σ(z1, · · · , zn)), then

ES [R(A(S))−Remp(A(S))] ≤ β (8.1)

8-1
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Proof: On the one hand,

ES [Remp(A(S))] = ES [
1

n

n∑
i=1

l(A(S), zi)]

= ES [l(A(S), z1)]

That is because l(A(z1, · · · , zi, · · · , zn), zi) = l(A(zi, · · · , z1, · · · , zn), z1) = l(A(S), z1), according to the
symmetry of A.
On the other hand,

ES [R(A(S))] = ESEz[l(A(S), z)]
= Ez1,··· ,zn,z[l(A(S), z)]

That means the expected loss on the random data z1, · · · , zn, z. Switch z and z1, we have

ES [R(A(S))] = ES [l(A(S′), z1)]

where S′ denotes (z, z2, · · · , zn).
According to the definition of β,

ES [R(A(S))−Remp(A(S))] = ES [l(A(S), z1)− l(A(S′), z1)]

≤ β

Lemma 8.4 (McDiarmid’s Inequality) Suppose |f(x1, · · · , xn)−f(x1, · · · , x′
i, · · · , xn)| ≤ ci,∀i ∈ [n],∀x1, · · ·xi, x

′
i, · · · , xn.

Then
P(f(X1, · · · , Xn)− Ef(X1, · · · , Xn) ≥ ϵ) ≤ exp{− 2ϵ2∑

c2i
} (8.2)

Lemma 8.5 Assume |l(·, ·)| ≤M ,∣∣[R(A(S))−Remp(A(S))]− [R(A(Si))−Remp(A(Si))]
∣∣ ≤ 2(β +

M

n
) (8.3)

Proof: ∣∣[R(A(S))−Remp(A(S))]− [R(A(Si))−Remp(A(Si))]
∣∣

≤
∣∣Remp(A(S))−Remp(A(S1))

∣∣+ ∣∣R(A(S))−R(A(S1))
∣∣

≤ 1

n

∣∣l(A(S), z1)− l(A(S1), z′1)
∣∣+

1

n

n∑
i=2

∣∣l(A(S), zi)− l(A(S1), zi)
∣∣+

Ez[l(A(S), z)− l(A(S1), z)]

≤ 1

n
(
∣∣l(A(S), z1)− l(A(S1), z1)

∣∣+ ∣∣l(A(S1), z1)
∣∣+ ∣∣l(A(S1), z′1)

∣∣) + n− 1

n
β + β

≤ 2(β +
M

n
)
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Though loss functions are usually unbounded, 8.3 still holds. That’s because the proof only uses
∣∣l(A(S1), z1)

∣∣ ≤
M and

∣∣l(A(S1), z′1)
∣∣ ≤M , which are ensured by the bounded data.

Finally, we conclude the proof of Theorem 8.2:

Proof: Denote Φ(S) = R(A(S))−Remp(A(S)). According to Lemma 8.3, we have

P(Φ(S) ≥ β + ϵ) ≤ P(Φ(S)− ES [Φ(S))] ≥ ϵ)

Lemma 8.5 means that Φ(S) is a stable function, where ci = 2(β + M
n ), then we can used McDiarmid’s

Inequality to get the result,

P(Φ(S)− ES [Φ(S))] ≥ ϵ) ≤ exp

(
2ϵ2∑n
i=1 c

2
i

)
= exp

(
−nϵ2

2(nβ +M)2

)

8.3 Clustering

Clustering is an unsupervised learning task, and is described as follows:

Given a set of datas {x1,x2, . . . ,xn} and a non-zero integer k ≤ n, where each data is a d-dimensional
real vector, clustering(k-means clustering) aims to partition these n datas into k sets S1, S2, . . . , Sk so as to
minimize the following loss function

ϕ =

k∑
i=1

∑
x∈Si

||x− µi||2

where µi is the cluster center of Si.

The most common algorithm is ”k-means algorithm”.

Algorithm 8.3.1: k-means algorithm
1 Initialize: choose k points randomly as the cluster centers m1, . . . ,mk;
2 do
3 Assign each data to the cluster center with the nearest mean;
4 Si ← {xj : xj is assigned to mi},∀i;
5 mi ← the mean of points in Si,∀i;
6 while k cluster centers changes;
7 return m1, . . . ,mk;

However, this naive algorithm is only guaranteed to find a local optimum.

Improvement: k-means++
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We can optimize the ”initialize” step in line 1 as follows:

Algorithm 8.3.2: Improved initialization
1 Choose one center uniformly at random among the data points;
2 for i : 2→ k do
3 Choose one new data point at random as a new center, a point x is chosen with probability

proportional to ||x−m∗||2, where m∗ ∈ {m1, . . . ,mi−1} and is nearest to x.
4 end

Letting ϕOPT denote the global optimal loss, it has been proved by Arthur and Vassilvitskii[1] that after
choosing centers in this way, we have

E[ϕ] ≤ 8(ln k + 2)ϕOPT

References
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9.1 Dimensionality Reduction

Assume we have N points x1, x2, ...., xN in Rn, and we want to map these points to a space with lower
dimension, for example Rd, where d� n. An intuition is to map these points to the ”dim” in which the data
share high variance and the loss is related to the projection distance. And to minimize the distance loss, we
will use Principle Component Analysis method, as an traditional use of SVD. If we put all the points into
a matrix A and use SVD on A, we will get A =

∑r
i=1 σiuiv

T
i , then we save the d terms with the largest

singular value in the above sum equation, surely the we can also get the form by solving the eigenvalues and
eigenvectors of AAT or ATA. It’s not difficult, and details will not be repeated.

Here we introduce another method to realize dimensionality reduction.

9.1.1 Johnson-Lindenstrauss Lemma

The Johnson-Lindenstrauss lemma is a fundamental result in dimensionality reduction that states that any
m points in high-dimensional space can be mapped to a much lower dimension, k ≥ O( logm

ε2 ), without
distorting pairwise distance between any two points by more than a factor of (1±ε).

To begin with, the proof of this theorem is an existential proof, not a constructive one.

Lemma 9.1 Let Q be a random variable following a χ2-squared distribution with k degrees of freedom.
Then we have following inequality:

P ((1− ε)k ≤ Q ≤ (1 + ε)k) ≥ 1− 2e−(ε2−ε3)k/4

Proof:
P (Q ≥ (1 + ε)k) = P (exp(tQ) ≥ exp((1 + ε)tk)), t > 0 (9.1)

According to Markov’s inequality, we have:

P (exp(tQ) ≥ exp((1 + ε)tk)) ≤ E(exp(tQ))

exp((1 + ε)tk)))
=

(1− 2t)−
k
2

exp((1 + ε)tk)))
(9.2)

The equation above we use is the moment-generating function of a χ2-squared distribution with k degrees

of freedom. According to ∂f(t)
∂t = 0,we choose t = ε

2(1+ε) to minimize the RHS.And we get that:

P (Q ≥ (1 + ε)k) ≤
(

1 + ε

eε

) k
2

(9.3)

9-1
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Inspired by Taylor’s formula, we have:

1 + ε ≤ eε− ε
2

2 + ε3

2 (9.4)

So the above inequality comes into the following form:

P (Q ≥ (1 + ε)k) ≤ e−
kε2(1−ε)

4 (9.5)

The statement of the lemma follows by using similar techniques to bound another situation and by applying
the union bound.

Lemma 9.2 Let x ∈ RN , define k ≤ N and assume that entries in A ∈ Rk×N are sampled independently
from N(0, 1). Then for any 0 ≤ ε ≤ 1

2 , we have following inequality:

P

[
(1− ε)||x||2 ≤ || 1√

k
Ax||2 ≤ (1 + ε))||x||2

]
≥ 1− 2e−(ε2−ε3)k/4

Proof: we notice that, ||Ax||
2

||x||2 =
∑k
i=1 T

2
i , where Ti ∼ N(0, 1), so we know that

∑k
i=1 T

2
i obeys χ2-squared

distribution with k degrees of freedom.

P

[
(1− ε)||x||2 ≤ || 1√

k
Ax||2 ≤ (1 + ε))||x||2

]
= P

[
(1− ε)k ≤

k∑
i=1

T 2
i ≤ (1 + ε)k

]
(9.6)

Then we use Lemma 9.1 and the proof is completed.

Now we can prove JL lemma.

Lemma 9.3 For any tolerance ε ∈ (0,1) and any m > 4, k > 8logm
ε2(1−ε) , there exists a map f :RN → Rk,such

that for any u,v ∈ set V of m points in RN , we have:

(1− ε)||u− v||2 ≤ ||f(u)− f(v)||2 ≤ (1 + ε)||u− v||2 (9.7)

Proof: We choose f = 1√
k

. According to Lemma 9.2, we have P [(1− ε)||x||2 ≤ || 1√
k
Ax||2 ≤ (1 + ε))||x||2] ≥

1− 2e−(ε2−ε3)k/4.
According to union bound, we have:

P [fail] ≤
(
m
2

)
∗ 2e−(ε2−ε3)k/4 (9.8)

Notice
(
m
2

)
≤ m2, Finally we get following inequality to guarantee the existence of the mapping:

P [fail] ≤ m2e−(ε2−ε3)k/4 < 1 (9.9)

which is equivalent to following inequality:

k >
8 logm

ε2(1− ε)
(9.10)
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9.2 Online Learning

Online machine learning is a method of machine learning in which data becomes available in a sequential
order and is used to update the best predictor for future data at each step.[1] It differs from our previous
methods in that: first, online learning mixes training and test phases; second, with online learning, no
distributional assumption is made and thus there is no notion of generalization. Instead, the performance of
online learning algorithms is measured using a mistake model and the notion of regret. To derive guarantees
in this model, theoretical analyses are based on a worst-case or adversarial assumption.

Let’s begin with a traditional setting of online learning:

9.2.1 Prediction with expert advice

Assume that there are T rounds and N experts. At the tth round, every expert i ∈ [N ] makes a prediction,
denoted as ỹt,i ∈ {0, 1}, then the learner makes prediction ỹt. After that, the adversary reveals yt ∈ {0, 1}.

The objective is to minimize the accumulate loss (here it is 0-1loss)
T∑
t=1

I[ỹt 6= yt].

Our simple intuition might lead us to the ”follow the leader” strategy, which means at the tth round, we
make the same prediction as best expert, that is, the expert who makes the smallest number of mistakes in
the former t− 1 rounds. However, this strategy gives poor performance both theoretically and practically.

9.2.1.1 Weighted Majority Algorithm

In this section we will introduce a boosting-like algorithm, the Weighted Majority (WM) algorithm, that
weights the importance of experts and applies Multiplicative Weight Updating to reduce the weight of
incorrect experts at each round.

Algorithm 9.2.1: Weighted Majority Algorithm

1 Initialize: w1,i = 1,∀i ∈ [N ];
2 Parameter: β ∈ (0, 1);
3 for t=1,2,...,T do

4 Learner makes weighted majority vote: ỹt =

0 if
∑̃

yt,i=0

wt,i >
∑̃

yt,i=1

wt,i

1 otherwise.
;

5 if ỹt = yt then
6 wt+1,i ← wt,i ∀i ∈ [N ] ;
7 else

8 wt+1,i ←

{
βwt,i ỹt,i 6= yt

wt,i ỹt,i = yt
∀i ∈ [N ];

9 end

10 end

The following theorem presents a mistake bound of WM algorithm after T ≥ 1 rounds as a function of the
number of mistakes made by the best expert.

Theorem 9.4 For β ∈ (0, 1), after all T rounds, define the loss of learner as LT =
T∑
t=1

I[ỹt 6= yt], define the
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loss of ith expert as mT,i =
T∑
t=1

I[ỹt,i 6= yt],∀i ∈ [N ], define the loss of best expert as m∗T = mini∈[N ]mT,i.

We have

LT ≤
m∗T log 1/β + logN

log(2/(1 + β))

Proof: To prove this theorem, we first introduce a potential function. For any t ≥ 1, define the potential

function as Wt =
N∑
i=1

wt,i. On the one hand, since predictions are generated using weighted majority vote, if

the algorithm makes an error at round t, this implies that

Wt+1 ≤
(

1

2
+

1

2
β

)
Wt =

1 + β

2
Wt (9.11)

Since W1 = N and LT mistakes are made after T rounds, we thus have the following upper bound:

WT+1 ≤
(

1 + β

2

)LT
N (9.12)

On the other hand, since all weights are non-negative, we have ∀i ∈ [N ]

WT+1 ≥ wT+1,i = βmT,i (9.13)

Applying this lower bound to the best expert and combining it with the upper bound in (9.12) gives us:

βm
∗
T ≤ (

1 + β

2
)LTN

⇒m∗T log β ≤ logN + LT log(
1 + β

2
)

⇒LT log(
2

1 + β
) ≤ m∗T log

1

β
+ logN

Thus, the theorem guarantees a bound of the following form for WM algorithm:

LT ≤ constant× [mistakes of best expert] +O(logN)

Note that as β → 1, the constant → 2 (according to L’Hospital’s rule).
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9.2.1.2 Randomized Weight Updating

We first introduce another algorithm, which is different from the former one mainly in that the voting process
is replace with randomized selection of expert.

Algorithm 9.2.2: Randomized weight updating

1 Initialize: w1,i = 1, i ∈ [N ].

2 Parameter: β ∈ [ 1
2 , 1).

3 for t = 1, . . . , T do
4 Learner chooses it ∈ [N ] with probability wt,it/

∑
j wt,j and ỹt ← ỹt,it .

5 Update wt+1,i ← βwt,i for all i such that ỹt,i 6= yt.

6 end

The expected loss of the learner at round t is

lt =

∑
i wt,i|ỹt,i − yt|∑

j wt,j
, (9.14)

and the total expected loss is

LT =

T∑
t=1

lt. (9.15)

For Algorithm 2, we have the following theorem:

Theorem 9.5 For β ∈ [1/2, 1), the total expected loss is bounded by

LT ≤ (2− β)m∗T +
logN

1− β
. (9.16)

Proof: Consider again the potential function

Wt =
∑
i

wi,t. (9.17)

Note that

Wt+1 =
∑

ỹt,i=yt

wt,i + β
∑

ỹt,i 6=yt

wt,i =
∑
i

wt,i + (β − 1)
∑

ỹt,i 6=yt

wt,i

= Wt + (β − 1)
∑
i

wt,i|ỹt,i − yt| = Wt + (β − 1)Wtlt = Wt[1 + (β − 1)lt].

So we have

WT+1 = W1

T∏
t=1

[1 + (β − 1)lt] = N

T∏
t=1

[1 + (β − 1)lt].

On the other hand,

WT+1 ≥ max
i
wT,i = βm

∗
T ,

so

N

T∏
t=1

[1 + (β − 1)lt] ≥ βm
∗
T ,
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which is
T∑
t=1

log(1 + (β − 1)lt) ≥ m∗T log β − logN.

Note that
log(1 + (β − 1)lt) ≤ (β − 1)lt,

so

m∗T log β − logN ≤
T∑
t=1

(β − 1)lt = (β − 1)LT .

Thus we have a bound for LT :

LT ≤
logN

1− β
− log β

1− β
m∗T .

It suffices to show that
− log β ≤ (1− β)(2− β) (9.18)

for β ∈ [1/2, 1). Let
f(β) = log β + (1− β)(2− β),

then

f ′(β) =
1

β
− 3 + 2β =

(1− β)(1− 2β)

β
≤ 0.

So f(β) ≥ f(1) = 0, and (9.18) is proven.

For Algorithm 2, the coefficient before m∗T is improved to 2− β, strictly smaller than 2.

If

β = 1−
√

logN

T
≥ 1/2,

combined with m∗T ≤ T , we have

LT ≤ m∗T +

√
logN

T
m∗T +

√
T logN ≤ m∗T +

√
T logN +

√
T logN = m∗T + 2

√
T logN,

and the average loss per round is bounded by

LT
T
≤ m∗T

T
+ 2

√
logN

T
.

9.2.2 Proof of Von Neumann’s Minimax Theorem

9.2.2.1 Preliminary

We first introduce Hedge algorithm, a general case of randomized weight updating. Instead of 0-1 loss
(i.e. whether an expert gives the right prediction), this time we meet the loss function gt(i) ∈ [0, 1], which
indicates the loss we undertake if we follow expert i at round t.

Algorithm 9.2.3: Hedge

1 Initialize: w1,i = 1, i ∈ [N ].
2 Parameter: β ∈ (0, 1).
3 for t = 1, . . . , T do
4 Learner chooses it ∈ [N ] with probability wt,it/

∑
j wt,j and incurs lossgt(i).

5 Update wt+1,i ← wt,i · βgt(i) for all i.

6 end
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Similarly, we define the expected loss of the learner at round t:

lt =

∑
i wt,igt(i)∑
i wt,i

and the total expected loss is

LT =

T∑
t=1

lt

Theorem 9.6 Applying Alg 3, we have

RegretT = LT −min
i

T∑
t=1

gt(i) = O(
√
T logN)

Proof: Set ε = − lnβ > 0 and Wt =
∑T
t=1 wt,i for all t ≤ T .

It is easy to verify the following inequalities

∀x ≥ 0, e−x ≤ 1− x+ x2 (9.19)

1 + x ≤ ex (9.20)

Inspecting the sum of weights

Wt+1 =
∑
i

wt,ie
−εgt(i)

≤
∑
i

wt,i(1− εgt(i) + ε2gt(i)
2) (apply (9.19))

≤Wt(1− εlt + ε2) (notice that gt(i) ≤ 1)

≤Wte
−εlt+ε2 (apply (9.20))

Let i∗ = arg mini
∑T
t=1 gt(i), we have

e−ε
∑
t gt(i

∗) = wT+1,i∗ ≤WT+1 ≤W1e
−ε

∑
t lt+ε

2T = Ne−εLT+ε2T

Taking logarithm of both sides we get:

−ε
∑
t

gt(i
∗) ≤ lnN − εLT + ε2T

It immediately follows that

RegretT ≤ εT +
lnN

ε
≤ 2
√
T lnN = O(

√
T logN)

9.2.2.2 Minimax Theorem and its proof

Theorem 9.7 (Von Neumann’s minimax theorem) For any two-person zero-sum game defined by ma-
trix M ∈ Rm×n

min
p∈∆m

max
q∈∆n

pTMq = max
q∈∆n

min
p∈∆m

pTMq (∆k = {a ∈ Rk : ‖a‖1 = 1 ∧ a � 0})
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We have learned that if two players follow pure strategy (i.e. restrict p and q to having only one non-zero
entry), the result cannot be strictly better for the one who plays second if the playing order is reversed. (i.e.
mini maxjMij ≥ maxj miniMij)
In case of two players adopting mixed strategy, it is also intuitive that playing second is better, because
playing second means having more information without any cost. So we need only focus on proving the
reverse inequality. We will demonstrate that by adopting online learning algorithm, the first player can
reduce the disadvantage of playing first to an infinitesimal as learning time goes to infinity.
Proof: The inequality

min
p∈∆m

max
q∈∆n

pTMq ≥ max
q∈∆n

min
p∈∆m

pTMq (9.21)

is straightforward. (Let q∗ ∈ arg maxq∈∆n minp∈∆m p
TMq, p∗ ∈ arg minp∈∆m maxq∈∆n p

TMq, LHS =
maxq∈∆n

p∗TMq ≥ p∗TMq∗ ≥ minp∈∆m
pTMq∗ = RHS)

To show the reverse inequality, consider an online learning setting where Alg 3 is applied. In this case, row
player (playing fist) is the learner, who chooses pt such that (pt)i =

wt,i
Wt

. Column player is the adversary

who always select the optimal adversarial qt (i.e. qt ∈ arg maxq∈∆n p
T
t Mq). There are m experts who keep

suggesting choosing one single row. Thus the loss function gt(i) = (Mqt)i (we can let Mij ∈ [0, 1] without
loss of generality).
Then from Theorem 9.6 we have

LT −min
i

T∑
t=1

gt(i) =

T∑
t=1

pTt Mqt −min
i

(M

T∑
t=1

qt)i = O(
√
T logm)

Then

1

T

T∑
t=1

pTt Mqt ≤
1

T
min
i

(
M

T∑
t=1

qt

)
i

+O

(√
logm

T

)

= min
p∈∆m

(
pTM(

1

T

T∑
t=1

qt)

)
+ o(1)

≤ max
q∈∆n

min
p∈∆m

pTMq + o(1)

And we have

min
p∈∆m

max
q∈∆n

pTMq ≤ max
q∈∆n

(
1

T

T∑
t=1

pTt

)
Mq ≤ 1

T

T∑
t=1

max
q∈∆n

pTt Mq =
1

T

T∑
t=1

pTt Mqt ≤ max
q∈∆n

min
p∈∆m

pTMq + o(1)

So we have
min
p∈∆m

max
q∈∆n

pTMq ≤ max
q∈∆n

min
p∈∆m

pTMq

Combined with (9.21), the proof is completed.
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10.1 More on Randomized Weight Updating

In this problem, we have an adversary and a learner.
The learner is asked to learn a distribution ~x over [N].
The following interaction repeats:

For t = 1, 2, · · · :
1. Adversary provides ~ft ∈ {0, 1}N
2. Learner predictes 〈~ft, ~x〉 and gives its answer to adversary

3. Adversary reveals the answer for 〈~ft, ~x〉

We would like to design a mechanism so that the leaner makes δ−error at most finite times. More precisely,
∃T , ∀t > T , |Rt − 〈ft, x〉| ≤ δ, where Rt is the prediction made by learner at time t.

The following algorithm bounded T to O( logN
δ2 ).

Algorithm 10.1.1: Randomized Weight Updating

1 Initialize x1 = ( 1
N · · ·

1
N ), set parameter ε ∈ (0, δ]

2 for t = 1, 2, · · · do
3 if 〈ft, xt〉-〈ft, x〉 ≥ δ then
4 xt+1[i]← (1 + ε)xt[i], ∀ft,i = 0
5 xt+1[i]← xt[i], ∀ft,i = 1
6 Normalize xt+1

7 end
8 else if 〈ft, xt〉-〈ft, x〉 ≤ −δ then
9 xt+1[i]← (1 + ε)xt[i], ∀ft,i = 1

10 xt+1[i]← xt[i], ∀ft,i = 0
11 Normalize xt+1

12 end
13 else
14 xt+1 ← xt
15 end

16 end

We now prove the efficiency of the algorithm.

Lemma 10.1 The learner update at most 2 lnN
εδ times.

10-1
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Proof: Write {i ∈ [N ]|ft[i] = 0} as F t0 and [N ]/F t0 as F t1 . When 〈ft, xt〉 − 〈ft, x〉 ≥ δ, we have

〈ft, xt〉 − 〈ft, x〉 =
∑
i∈[N ]

ft[i](xt[i]− x[i]) =
∑
i∈F t

1

xt[i]− x[i] ≥ δ.

For
∑N
i=1 x[i] = 1 =

∑N
i=1 xt[i], we get ∑

i∈F t
0

xt[i]− x[i] ≤ −δ

Consider potential function D(x‖xt).

D(x‖xt+1)−D(x‖xt) =

N∑
i=1

x[i] ln
xt[i]

xt+1[i]

=
∑
F t

0

x[i] ln
1 + ε

∑
F t

0
xt[i]

1 + ε
+
∑
F t

1

x[i] ln(1 + ε
∑
F t

0

xt[i])

= ln(1 + ε
∑
F t

0

xt[i])−
∑
F t

0

x[i] ln(1 + ε)

For given δ and ε ≤ δ, ln(1 + ε) > ε(1− δ/2). And ln(1 + ε
∑
F t

0
xt[i]) ≤ ε

∑
F t

0
xt[i] ≤ ε

∑
F t

0
x[i]− εδ. Thus,

D(x‖xt+1)−D(x‖xt) ≤ ε
∑
F t

0

x[i]− εδ −
∑
F t

0

x[i]ε(1− δ/2) ≤ −εδ/2

It’s similar when 〈ft, xt〉 − 〈ft, x〉 ≤ −δ, we have∑
i∈F t

1

xt[i]− x[i] ≤ −δ

and

D(x‖xt+1)−D(x‖xt) =
∑
F t

1

x[i] ln
1 + ε

∑
F t

1
xt[i]

1 + ε
+
∑
F t

0

x[i] ln(1 + ε
∑
F t

1

xt[i])

= ln(1 + ε
∑
F t

1

xt[i])−
∑
F t

1

x[i] ln(1 + ε)

≤ε
∑
F t

1

x[i]− εδ −
∑
F t

1

x[i]ε(1− δ/2)

≤− εδ/2

This means that each update of the potential function reduces at least εδ/2. Due to D(x‖xt) ≥ 0, and

D(x‖x1) =
∑
i∈[N ] x[i] ln x[i]

1/N =
∑
i∈[N ] x[i] lnx[i] + lnN ≤ lnN, the learner update at most 2 lnN

εδ times.

10.2 Multi-arm Bandits Problem

10.2.1 Setting

In a k-slot machine, each arm has a probability loss µi(i ∈ [k]). And the game has T rounds in total, at
each step t, the player chooses an arm at, and observes a loss lt(at). Be ignorant of µi, the player wants
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to minimize the total loss in expectation. To be specific, for each arm i ∈ [k], l1(ai), · · · , lT (ai) are i.i.d.
random variables under some distribution Di with mean µi. Define regret RT as

RT := EA

[
T∑
t=1

µ(at)− µ∗
]

where we replace lt(at) with mean µ(at) and define µ∗ = mini∈[k] µi. Our goal is then to minimize RT .

Multi-arm Bandits Problem is a simplified reinforcement learning problem. Because we don’t know actual
reward, the trade-off between exploration and exploitation is necessary.

10.2.2 UCB Algorithm

To minimize regret RT , UCB algorithm gives an effective strategy, which is based on a simple principle:
Optimism in the face of uncertainty. To be exact, after t rounds, each arm has an estimated interval of loss
(with high probability), and we just assume the lowest bound of the interval is the loss probability of the
arm. The algorithm is called upper confidence bound because people used to consider the probability of win
in the past. The implement of UCB algorithm is as follow.

Algorithm 10.2.1: UCB Algorithm

1 Initialization: n0(a) = 0(∀a ∈ [k]);
2 nt(a) represents #times arm a is pulled at time t;
3 µ̂t(a) represents the empirical loss of arm a at time t;
4 for t = 1, 2, · · · , T do

5 For each arm a, compute UCBt(a) = µ̂t−1(a)−
√

lnT
nt−1(a) ;

6 Pull the arm at = arg mina∈[k] UCBt(a) ;
7 Update nt(at), µ̂t(at) ;

8 end

Note that at the very beginning, if there exists nt−1(a) = 0, then UCBt(a) = −∞. Therefore the algorithm
tends to explore arm a. Now consider a substitute. If at each step of UCB algorithm, we choose the minimum
among upper bounds instead of among lower bounds, then the algorithm prefers exploitation rather than
exploration. Hence it may stick in some local optima.

10.2.3 Upper Confidence Bound

W.L.O.G. Suppose µ1 = mini∈[k] µi, which means that the first arm has the lowest average loss.

Theorem 10.2 Assume µ1 ≤ µ2, · · · , µk, the regret of UCB algorithm can be bounded as:

RT = EA

[
T∑
t=1

µ(at)−
T∑
t=1

µ1

]
≤

∑
a:∆a>0

(
16 lnT

∆a
+ 2∆a

)
(10.1)

where ∆a = µa − µ1 denotes the gap of average loss between arm a and the optimal arm.

Proof: First of all, note that RT can be written as

RT = EA

[
T∑
t=1

µ(at)

]
−

T∑
t=1

µ1 =

k∑
a=1

∆a · EA[nT (a)]
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Since the regret RT equals to∑
a

(#times arm a is pulled)× (gap of loss between arm a and the optimal arm)

which simply uses the technique of double counting.

Therefore we only need to prove that, for each sub-optimal arm a(∆a > 0), we have

EA[nT (a)] = O

(
lnT

∆2
a

)
+ 2

Lemma 10.3 For each sub-optimal arm a with ∆a > 0, we have

EA[nT (a)] = O

(
lnT

∆2
a

)
+ 2 (10.2)

where nT (a) denotes #times arm a is pulled in T rounds.

Proof: By linearity of expectation, EA[nT (a)] could be written as

EA[nT (a)] = E

[
T∑
t=1

1[a is pulled at round t]

]
=

T∑
t=1

Pr[a is pulled at round t]

Therefore for any n, we have

EA[nT (a)] =

T∑
t=1

T∑
k=1

Pr[at = a ∧ nt(a) = k]

≤ n+

T∑
t=1

T∑
k=n+1

Pr[at = a ∧ nt(a) = k]

≤ n+

T∑
t=n+1

Pr[at = a ∧ nt−1(a) ≥ n]

Then our goal is to better estimate EA[nT (a)] by choosing the parameter n according to ∆a. Before fine-
turning n, we present a proposition here.

Proposition. If sub-optimal arm a(∆a > 0) is pulled at time t, then we can claim that at least one of the
following events occur:

1. µ̂t−1(1) > µ1 +
√

lnT
nt−1(1)

2. µ̂t−1(a) < µ1 +
√

lnT
nt−1(a) = µa −∆a +

√
lnT

nt−1(a)

Suppose neither of them occur, then µ̂t−1(1)−
√

lnT
nt−1(1) ≤ µ1 ≤ µ̂t−1(a)−

√
lnT

nt−1(1) . But in UCB algorithm,

arm a is choosen to be at = arg mina∈[k]

(
µ̂t−1(a)−

√
lnT

nt−1(a)

)
, raising a contradiction.
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Union Bound. With the proposition above, we have

Pr [at = a ∧ nt−1(a) ≥ n] ≤Pr

[
µ̂t−1(1) > µ1 +

√
lnT

nt−1(1)

]

+ Pr

[
µ̂t−1(a) < µa −∆a +

√
lnT

nt−1(a)
∧ nt−1(a) ≥ n

]
And sum over t,

T∑
t=n+1

Pr [at = a ∧ nt−1(a) ≥ n] ≤
T∑

t=n+1

Pr

[
µ̂t−1(1) > µ1 +

√
lnT

nt−1(1)

]

+

T∑
t=n+1

Pr

[
µ̂t−1(a) < µa −∆a +

√
lnT

nt−1(a)
∧ nt−1(a) ≥ n

]

Deal with the two summations separately. For the first summation,

T∑
t=n+1

Pr

[
µ̂t−1(1) > µ1 +

√
lnT

nt−1(1)

]
≤

T∑
t=n+1

T∑
k=1

Pr

[
µ̂t−1(1) > µ1 +

√
lnT

k
∧ nt−1(1) = k

]

≤
T∑

t=n+1

T∑
k=1

Pr

[
µ̂t−1(1) > µ1 +

√
lnT

k

∣∣∣∣∣nt−1(1) = k

]

≤
T∑

t=n+1

T∑
k=1

exp

−2k

(√
lnT

k

)2


=

T∑
t=n+1

T∑
k=1

1

T 2
≤ 1

where nt(1) denotes the counter of pulling arm 1, and the third inequality is a Chernoff bound.

Similarly, for the second summation, we choose n such that ∆a = 2
√

lnT
n , and therefore

T∑
t=n+1

Pr

[
µ̂t−1(a) < µa −∆a +

√
lnT

nt−1(a)
∧ nt−1(a) ≥ n

]

≤
T∑

t=n+1

Pr

[
µ̂t−1(a) < µa −

√
lnT

nt−1(a)
∧ nt−1(a) ≥ n

]
≤ 1

(the first inequality holds because nt−1(a) ≥ n). Combining these three inequalities, we have

EA[nT (a)] ≤ n+ 2 = O

(
lnT

∆2
a

)
+ 2

which completes the proof.

Note: The bound given above is instance-dependent regret bound since it contains ∆a. If we treat ∆a as a
constant, then RT = O(k lnT ), which provides a better bound than O(

√
T ) in Expert Advice Problem. But
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∆a can be small for some arms (∆a can not be seen as a constant in this situation), and as a consequence,
the regret bound given above will be loose. In fact, if ∆a is treated carefully, we can have a better bound
for RT than this theorem does.

Next, we will give a instance-independent regret bound which is worst-case regret bound of UCB.

Theorem 10.4 Assume ∆a is bounded, then the worst-case regret bound of UCB is:

RT = O
(√

T · k lnT
)

(10.3)

Proof: Divide the arms into two groups at the gap of δ =
√

k·lnT
T . For ∆a < δ, we have

R
(1)
T =

T∑
t=1

∑
a:∆a<δ

∆a · Pr[at = a] ≤ T · δ ≤
√
T · k lnT

And for ∆a ≥ δ, by applying the theorem above, we have

R
(2)
T ≤

∑
a:∆a≥δ

(
16 lnT

∆a
+ 2∆a

)
= O

(
k · lnT

δ

)
= O

(√
T · k lnT

)

where ∆a is bounded. Therefore RT = R
(1)
T +R

(2)
T = O

(√
T · k lnT

)
.
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11.1 Thompson Sampling

Thompson sampling was first proposed by William R. Thompson in 1933. The principle behind Thompson
sampling is Beta distribution. Beta distribution forms a family of continuous probability distributions on
the interval (0, 1). And for Beta(α, β)(α > 0, β > 0), the probability density function is given by:

f(x, α, β) =
Γ(α+ β)

Γ(α)Γ(β)
xα−1(1− x)β−1

For a Bernoulli bandit problem, we can use Beta distribution to update the Bernoulli loss, because if the
prior is a Beta(α, β), we can sure that the posterior distribution is Beta(α+ 1, β) or Beta(α, β + 1).
The Thompson Sampling algorithm assumes arm a to have prior Beta(1, 1) on µa, and initialize Sa =
0, Fa = 0. At time t, the algorithm updates the distribution on µaas Beta(Sa + 1, Fa + 1). The algorithm
then samples from µa

′s posterior distributions. According to the probability of its mean being the largest,
then plays an arm. And if rt(at) /∈ {0, 1}, the algorithm tosses a rt(at)-coin to get a {0, 1}-result.

Algorithm 1 Thompson Sampling

1: Initialization a = 1, 2 · · ·K,Sa = 0, Fa = 0
2: for t = 1, 2, ..., T do
3: For each arm a, select Θa(t) ∼ Beta(Sa + 1, Fa + 1)
4: Play arm at = arg maxa Θa(t) and get reward rt(at) ∈ [0, 1]
5: Toss a rt(at)-coin, get r̃t(at) ∈ {0, 1}
6: If r̃t(at) = 1, Sa ← Sa + 1; Else, Fa ← Fa + 1

Theorem 11.1 For ∀ε > 0, Thompson sampling has regret:

RT ≤ (1 + ε)
∑
a6=a∗

log T∆a

d(µa, µa∗)
+O(

k

ε2
)

where d(u, v) = u ln u
v + (1− u) ln 1−u

1−v

Proof: We notice that we have the equation

RT = EA

T∑
t=1

lt(at)−
T∑
t=1

µ1 =

k∑
a=1

∆aEA[nT (a)]

11-1
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Now we need to bound each arm’s EA[nT (a)]to prove our theorem. It’s quite complex so you can refer to
[1] to see the detailed calculation:

EA[nT (a)] ≤ (1 + ε0)2
log T

d(µa, µa∗)
+O(

1

ε20
)

And then we take ε = 3ε0,

RT ≤
∑
a6=a∗

(1 + ε0)2
log T∆a

d(µa, µa∗)
+O(

1

ε20
) ≤ (1 + ε)

∑
a6=a∗

log T∆a

d(µa, µa∗)
+O(

k

ε2
)

11.2 Differential Privacy

Data leakage refers to a mistake made by the creator of a machine learning model in which they accidentally
share information with the user. For example, in the traditional SVM model, the output classifier f(x) =∑
i αiyik(x : xi), gives the information of all of the margin. Before solving this problem, we have to define

it first. It’s hard to define what’s privacy, which is quite abstract and philosophical. Instead, we can define
what is a privacy leak.

The primary object of a privacy-preserving algorithm is to release some statistical information about the
dataset but do not leak much information about specific data. We now model the privacy leakage in query
answering.

Definition 11.2 (Neighboring Datasets) Consider dataset D = {x1, x2, · · · , xn}, xi ∈ X,D ∈ Xn. We
say that two datasets D,D′ ∈ X are neighboring if they differ in only a single data element.

Definition 11.3 (Counting Query) A counting query Qh, defined in terms of a predicate h : X → {0, 1}
is defined to be

Qh(D) :=
1

|D|
∑
i

h(xi), h(xi) ∈ {0, 1}

It evaluates the fraction of elements in the dataset that satisfy the prediction h.

Definition 11.4 (Differential Privacy) Let A be a randomized algorithm, A : Xn → R, with input D, we
say A satisfies ε-differential privacy if for all neighboring datasets D,D

′ ∈ Xn, and all set S ⊆ Output(A),
we have

Pr[A(D) ∈ S] ≤ eε Pr[A(D′) ∈ S]

This definition captures the core nature of privacy. It describes the stability of the answer under the data
disturbance. If the change of a certain data will cause the result to fluctuate greatly, then this algorithm
does not protect the data privacy well. In particular, if ε is equal to 0, the answer for adjacent data will be
the same.

Definition 11.5 ((α, β)-accuracy) Say randomized algorithm A has (α, β) − accuracy with respect to
counting query Q if:

∀D ∈ Xn, P(|A(D)−Q(D)| ≥ α) ≤ β
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Definition 11.6 (The Laplace Distribution) The Laplace Distribution(centered at 0) with scale σ is the
distribution with probability density function:

f(x|σ) =
1

2σ
exp(

−|x|
σ

)

The Laplace distribution is a symmetric version of the exponential distribution, and we will write Lap(σ) to
denote the Laplace distribution with scale σ.

Lemma 11.7 let f(x|σ) denote the probability density function of the Laplace Distribution, then

∀x1, x2 ∈ R,
f(x1|σ)

f(x2|σ)
≤ exp( |x1 − x2|

σ
)

.

Proof:
f(x1|σ)

f(x2|σ)
= exp(

−|x1|+ |x2|
σ

) ≤ exp( |x1 − x2|
σ

)

.

We will now define the Laplace Mechanism. As its name suggests, the Laplace mechanism will simply
compute f , and perturb each coordinate with noise drawn from the Laplace distribution.

Definition 11.8 (The Laplace Mechanism) Given any function f : Xn → Rk, the Laplace Mechanism
responds to f by returning f(x) + Z, where Z = (Y1, · · · , Yk) is a k-dimension random variable and ∀i ∈
[k], i.i.d.Yi ∼ Lap(σ).

In the case where f is just a single query(k = 1), the Laplace Mechanism return f(D) + Z,Z ∼ Lap(σ).

Theorem 11.9 The Laplace Mechanism preserves ε-differential privacy and has (α, β) − accuracy with
respect to the single counting query Q : Xn → [0, 1], where ε = 1

nσ , α = σln 1
β , β := neg(n) i.e.∀k ∈ N, β < nk.

Proof: Let A denotes the Laplace Mechanism(consistent with the notation of the randomized algorithm we
defined earlier). According to Lemma 11.7, for every a ∈ Output(A), the ratio

P(A(D) = a)

P(A(D′) = a)
=

f(a−Q(D))

f(a−Q(D′))
≤ exp( |Q(D)−Q(D′)|

σ
) ≤ exp( 1

nσ
)

As for α, consider the equation

P(|A(D)−Q(D)| ≥ α) = 2 · 1

2σ

∫ ∞
α

e−
t
σ dt = β

We get α = σln 1
β .

Definition 11.10 (Accuracy(multiple queries)) Let Q = (Q1, · · · , Qk) : Xn → Rk be a counting query
sequence. Let A be the algorithm with k output:A(D) = (A1(D), · · · , Ak(D)).
We say A has (α, β)− accuracy with respect to queries in Q, if for every D ∈ Xn:

P(||A(D)−Q(D)||∞ ≥ α) ≤ β

i.e. with probability at least 1− β, maxi∈[k] |Qi(D)−Ai(D)| ≤ α.
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Lemma 11.11 The Laplace Mechanism satisfies kε-differential privacy and (α, kβ)-accuracy with respect to
a sequence of k queries Q = (Q1, · · · , Qk), if for every Qi (i = 1, . . . , k), the Laplace Mechanism satisfies
ε-differential privacy and (α, β)-accuracy respectively.

Proof: LetAi(D) denote the i-th output of the Laplace Mechanism. By definition, [Ai(D)−Qi(D)] ∼ Lap(σ)
independently, and the joint probability density function of A(D) = (A1(D), · · · , Ak(D)) is

fA(D)(~x = (x1, . . . , xk)) =

k∏
i=1

fAi(D)(xi) =

k∏
i=1

fσ(xi −Qi(D)) .

From ε-differential privacy of Ai, we have fAi(D)(xi) ≤ eεfAi(D′)(xi), and thus

fA(D)(~x) ≤ ekεfA(D′)(~x) .

Therefore ∀S ⊆ Rk, we have

P(A(D) ∈ S)

P(A(D′) ∈ S)
=

∫
~x∈S fA(D)(~x) d~x∫
~x∈S fA(D′)(~x) d~x

≤ ekε ,

so the Laplace Mechanism satisfies kε-differential privacy for Q = (Q1, · · · , Qk).
By union bound,

P(||A(D)−Q(D)||∞ ≥ α) ≤
k∑
i=1

P(|Ai(D)−Qi(D)| ≥ α) ≤ kβ,

the (α, kβ)-accuracy is satisfied.

As a corollary, we have

Theorem 11.12 The Laplace Mechanism satisfies k
nσ -differential privacy and (α, β)-accuracy with respect

to a sequence of k counting queries Q = (Q1, · · · , Qk), where α = σ ln k
β .

Given a fixed β, when n is sufficiently large, we expect that α = O( 1√
n

), which is close to the sampling error,

or that α = o(1), so that the output gets better accuracy as n grows. To preserve privacy, people usually
demand that ε = O(1). These requirements put a limit on k, the available number of queries.

Theorem 11.13 If a Laplace Mechanism satisfies ε-differential privacy and (α, β)-accuracy with respect to
a sequence of k counting queries Q = (Q1, · · · , Qk), where ε = O(1), α = o(1), and given β ∈ (0, 1), then
it’s required that k = o( n

lnn ).

Proof: From ε = k
nσ = O(1) we have k = O(nσ). From α = σ ln k

β = o(1) we have σ = o( 1
ln k
β

) = o( 1
ln k ).

Thus we have k ln k = o(n), therefore k = o( n
lnn ).
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12.1 Review

In last class we introduced Differential Privacy. In our modeled situation, the true dataset is D. A user
poses a query and wants to know q(D). The algorithm A gives the user an answer A(D) (which is generated
from a random distribution).

We often assume that the query q(D) is a counting query, which means that:

q(D) :=
1

|D|
∑
xi∈D

f(xi), f(x) ∈ [0, 1]

And we define ”ε-DP” as below:

Definition 12.1 (ε−DP) Let A be a randomized algorithm A : Xn → R, with input D, we say A satisfies
”ε-DP” if for any neighboring datasets D,D′ ∈ Xn and any item a ∈ Output(A), we have

Pr[A(D) = a] ≤ eε Pr[A(D′) = a]

For any set S and neighboring data set D and D′. We call this ”Pure-DP”. We can add a Laplacian noise
to the true answer before answering the user’s query to achieve Pure-DP.

12.2 Approximate DP

Pure-DP is a strong definition. It requires all of the neighboring datasets are bounded by the likelihood
ratio. It is also reasonable to only bound algorithm outputs of high probability with a likelihood ratio, and
restrict others with a constant. It also can achieve good results in practice. This idea is called Approximate
DP((ε− δ)−DP).

Definition 12.2 ((ε− δ)−DP) Let A be a randomized algorithm A : Xn → R, with input D, we say A
satisfies Approximate DP, or (ε− δ)−DP if for any neighboring datasets D,D′ ∈ Xn and any set S, we have

Pr[A(D) ∈ S] ≤ eε Pr[A(D′) ∈ S] + δ

Proposition 12.3 (A sufficient condition for (ε− δ)−DP) Let B(D, D’) =
{
x, Pr(A(D′)=x)

Pr(A(D′)=x) ≥ eε
}

. If

∀D, Pr (A(D) ∈ B(D,D′)) ≤ δ then A preserves (ε− δ)−DP.

To achieve Approximate DP, we can simply add a Gussian noise Gussian(σ2) to the query answer q(D) to
get the output, similar to the Laplacian-Mechanism we used for Pure-DP.

12-1
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12.3 The Exponential Mechanism

Now let’s return to Pure-DP. In last class, to make our Laplacian Mechanism preserve both ε-DP and (α, β)-
accuracy, where ε, α, β are all O(1), we can only allow our user to make k = O(n) queries. This sounds too
few. Can we do better? Like k � n or even k = exp(poly(n))?

In the Laplacian Mechanism, we returned close answers with high probability and large-error answers with
low probability. Generalizing this we can derive the ”Exponential Mechanism”.

We define u(D,x) as the Utility Function, or ”how accurate the returned value x is, given dataset D”. Then
we return query result A(D) according to the distribution:

P(A(D) = x) =
1

z
e
u(D,x)
σ

In which σ is a constant, and z is the normalizing constant of the distribution. We can see that in this
distribution, ”better” answers have higher probability.

Now we should try to analyze the privacy leakage and accuracy of the Exponential Mechanism.

First define the sensitivity of a given Utility Function u(D,x):

∆u , max
D,D′,x

|u(D,x)− u (D′, x)|

Theorem 12.4 the Exponential Mechanism preservers ε-differential privacy, where ε = 2∆u
σ .

Proof:

P(A(D) = a) =
exp(u(D,a)

σ )∑
a∈Λ exp(u(D,a)

σ )

P (A (D′) = a) =
exp

(
u(D′,a)

σ

)
∑
a∈Λ exp

(
u(D′,a)

σ

)
Using u (D′, a)−∆u ≤ u(D, a) ≤ u (D′, a) + ∆u, we have

P(A(D) = a) ≤ exp

(
2∆u

σ

)
P (A (D′) = a)

we say Exponential Mechanism has α− β accuracy, if:

Pr (u(D,A(D, q)) ≤ u∗ − α) ≤ β

where u∗ ,max u(D,x).

12.4 BLR Mechanism[1]

The Blum-Ligett-Roth (BLR) Mechanism is an data release mechanism that preserves both ε−d.p.and(α, β)
accuracy. The idea of BLR Mechanism is using random sampling instead of adding random noise.First we
introduce the algorithm of BLR Mechanism:
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Assumption 12.5 Data space is discrete and finite.

Param : k = the number of queries ,X = {0, 1}d, N = |X |, n = |D|, ε, (α, β), σ = 2
nε

1. Let m = 2 log(2k)
α2

2. For every D̂ ∈ Xm,Output synthetic dataset D̂

with probability P(A(D) = D̂) ∼ exp
(
u(D,D̂)

σ

)
where u(D, D̂) = −maxi∈[k] | qi(D)− qi(D̂) |

Now we should try to analyze the privacy leakage and accuracy of the BLR Mechanism.

Theorem 12.6 The privacy loss of BLR Mechanism with the parameters above is ε.

Proof: The database release in BLR Mechanism is to sample from the distribution defined by the exponential
mechanism. By the privacy loss analysis of the exponential mechanism in 12.4 and putting the parameters

in the formula, we have the privacy loss of BLR Mechanism is ε = 2∆u
σ =

2· 1n
2
nε

= ε.

As for the accuracy, we can define the dataset D̂ ∈ χm(m =
2 log(2k)

2α2
) to be “good” if

max
i∈[k]
|qi(D)− qi(D̂)| ≤ α

2

We can use Probability Method to prove that the ”good” dataset D̂ exists: Consider those as which are
subsets of D, and suppose D̂ is randomly drawn from D. By Chernoff bound and union bound,

Pr
(
∃i ∈ [k], |qi(D)− qi(D̂)| > α

2

)
≤ 2ke−

a2m
2 = 1

So ∃D̂ ∈ D̂ ∈ χm satisfies u(D, D̂) ≤ −α2 .

Correspondingly, we define D̂ to be ”bad” if u(D, D̂) ≤ u∗−α, where u∗ is the optimal value of u(D,D′). By
the property of the Exponential Mechanism, each ”bad” D̂ appears with probability pb = Pr(A(D) = D̂) ≤
1
z exp(u

∗−α
σ ) ≤ 1

z exp(−αnε2 ). The ”good” D̂ appears with probability pg ≥ 1
z exp(−αnε4 ), so each dataset D̂

satisfies u(D, D̂) ≤ −α appears with probability p ≤ pb/pg ≤ exp(−αnε4 ).

The total number of dataset is |χm| = Nm, we only need to set Nm exp(−αnε4 ) ≤ β to satisfiy the and
(α, β) accuracy. By this formula, we can calculate the asymptotic boundary of α. Then we have the theorem
below:

Theorem 12.7 The BLR Mechanism satisfies ε-DP and (α, β) accuracy, where

α = O

( log k logN + log 1
β

nε

) 1
3



12.5 Q&A

At the end of class, XSJ pointed out that many steps in the BLR-Mechanism’s proof are very loose, and
asked if there was a better bound. The lecturer told us that when you meet such questions about ”bounds”
when reading papers, there are usually three possible answers:
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(a) The mechanism actually has better performance, and a better bound can be proved if the researcher
does more math.

(b) This is already the best bound possible for this mechanism. However there exists a better mechanism
for this problem that has a better bound.

(c) It is impossible for any mechanism for this problem to exceed this bound.

In this particular case, the answer is (b). There is a better mechanism that supports α ∼ 1√
n

.

References

[1] Blum, A., Ligett, K., & Roth, A. (2013). A learning theory approach to noninteractive database privacy.
Journal of the ACM (JACM), 60(2), 1-25.



Machine Learning Spring 2021

Lecture 13: Differential Privacy, Boosting
Lecturer: Liwei Wang Scribe: Yutong Yin, Haowei Lin, Yuhan Guo, Jingwu Tang, Siyuan Chen

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.
They may be distributed outside this class only with the permission of the Instructor.

13.1 Local Differential Privacy

In the past decades, Differential Privacy, which gives strong privacy guarantees for users has risen to popu-
larity. The key idea is that a user is given plausible deniability by adding random noise to their input. We’ve
talked about mechanisms like Laplace mechanism and BLR mechanism to preserve both privacy and accu-
racy well. However, the setting we have discussed in is centralized Differential Privacy setting, where noise
is added to the database. This approach to Differential Privacy requires users to have trust the database
maintainer to keep their privacy because all the raw personal data is collected by the dataholder.

A stronger privacy guarantee for each individual users can be given in the local setting as there is no need to
trust a centralized authority. In Local Differential Privacy setting, each user encodes and perturbs their own
inputs before transmitting them to the untrusted server. This server can then compute statistical queries
on the input data. We can give the formal definition of LDP proposed by [1] as follows.

Definition 13.1 We say that an algoirhm A satisfies ε-Local Differential Privacy where ε > 0 if and only
if for any input v and v′

∀y ∈ Output(A) :
Pr[A(v) = y]

Pr[A(v′) = y]
≤ eε

where Output(A) denotes every possible output of the algorithm A.

In order to show how to deal with LDP problem, an example was given.

Example 13.2 Assume there is a survey released for an university to know whether the students are satisfied
with their president or not. Respondents should answer ”Yes” or ”No” with their real names known by the
surveyor. The problem is, how to design a mechanism to get meaningful statistics while preserving the privacy
of every respondent ?

The problem could be solved by the following mechanism.

Randomized Response Although Local Differential Privacy has only recently been gaining traction and
popularity, the ideas behind it are much older. The key idea of Local Differential Privacy is randomized
response, a surveying technique first introduced by Warner in [2]. To answer the question the respondent
gives a randomized output, which is truthful for probability p and fake for probability 1− p. If p is close to
1− p, the output distribution of algorithm A for different inputs will be similar. This preserves respondents’
privacy by giving them strong plausible deniability while allowing for computation of accurate population
statistics.

13-1
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Given that respondents comply with the protocol, respondents will answer the question truthfully 55% of the
time. An unbiased estimate of the true number of ”Yes” answer can therefore be computed by 10(X − 0.45)
where X refers to the fraction of respondents who answered in the positive. The survey participants are
given a privacy guarantee of ε = ln( 0.55

0.45 ) = ln 11
9 .

LDP has been seen in practical deployments by major technology organizations such as Apple [3], who use it
to collect usage statistics and find commonly used emojis, new words that are not part of the dictionary yet
and to improve user behaviour, Google [1], who use it in Chrome to collect commonly chosen homepages,
settings, and other web browsing behaviour, and Microsoft [4], who use it for their collection of telemetry
data.

13.2 Composition of Privacy Leakage

Previously, we have defined two kinds of differential privacy: ε-differential privacy (pure-dp) and (ε, δ)-
differential privacy (approximate-dp). And we also discussed the composition of privacy leakage in ε − dp
scenario.

Theorem 13.3 For Laplace Mechanism preserving ε0-differential privacy at each round, the total privacy
leakage of k rounds is kε0 (i.e. k rounds in total preserves kε0-dp).

Lemma 13.4 (McDiarmid inequality)Let X1, ..., Xm ∈ χm be a set of m ≥ 1 independent random variables
and assume that there exist c1,......,cm > 0 such that f: χm → R satisfies the following conditions:

|f(x1, ..., xi, ..., xm)− f(x1, ..., x
′

i, ..., xm)| ≤ ci

for all i ∈[m] and any points x1, ..., xm, x
′

i ∈ χ. Let f(S) denote f(X1, ..., Xm), then, for all ε >0, the following
inequalities hold:

Pr[f(S)− E[f(S)] ≥ ε] ≤ exp( −2ε2∑m
i=1 c

2
i

)

Pr[f(S)− E[f(S)] ≤ −ε] ≤ exp( −2ε2∑m
i=1 c

2
i

)

Theorem 13.5 For all ε0, δ ≥ 0, k rounds of independent Lap(σ), ε0-dp mechanisms satisfies (ε, δ)-dp where:

ε =
√

2kln(1/δ)ε0 + 2kε20

Proof: From the Proposition 12.3 in last lecture, we need to proof the bound of f(a1, ..., ak) =
∑k
i=1 ln

pi(ai)
qi(ai)

,

where pi(ai)
qi(ai)

denotes Pr(Ai(D)=ai)

Pr(Ai(D
′ )=ai)

. Notice that it is a problem about the sum of k i.i.d. variables, we can

estimate its expectation at first and then use concentration inequality to proof its bound.

Because of Lap(σ), we have −ε0 ≤ lnpi(ai)qi(ai)
≤ ε0. Let g(a) denote lnp(a)q(a) , observe 1 =

∫
p(a)da =

∫
q(a)da =∫

p(a)e−g(a)da. So we have:

Eai pi [ln
pi(ai)

qi(ai)
] =

∫
p(a)g(a)da (13.1)

= 1− 1 +

∫
p(a)g(a)da (13.2)

=

∫
p(a)[e−g(a) − 1 + g(a)]da (13.3)
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Let h(x) denote e−x−1 +x where x ∈ [−ε0, ε0]. Using derivation we have h(x) ≤ max{h(−ε0), h(ε0)}. With

the same way, we can get max{h(−ε0), h(ε0)} ≤ 2ε20. So, Eai pi [ln
pi(ai)
qi(ai)

] ≤ 2ε20.

For a1, ...ak are i.i.d. and |f(a1, ...ai, ..., ak) − f(a1, ...a
′
i, ..., ak)| = |lnpi(ai)qi(ai)

− lnpi(a
′
i)

qi(a′i)
| ≤ 2ε0, with Lemma

4.4, we have:

Pr[f(a1, ...ai, ..., ak) ≥ ε′ + 2kε20] ≤ Pr[f(a1, ...ai, ..., ak)− E[f(a1, ...ai, ..., ak)] ≥ ε′] ≤ exp( −ε
′2

2mε20
)

Let δ = exp(−ε
′2

2kε20
), we have:

ε′ =
√

2kln(1/δ)ε0

Therefore:

Pr[f(a1, ...ai, ..., ak) ≥
√

2kln(1/δ)ε0 + 2kε20] ≤ δ

13.3 Multiplicative Weight Updating Mechanism

Accuracy and privacy in the interactive setting. Formally, an interactive mechanism M(x) is a
stateful randomized algorithm which holds a histogram x ∈ RN . It receives successive counting queries
f1, f2, · · · ∈ F one by one, and in each round t, on query ft , it outputs a (randomized) answer at (a function
of the input histogram, the internal state, and the mechanism’s coins). For privacy guarantees, we always
assume that the queries are given to the mechanism in an adversarial and adaptive fashion by a randomized
algorithm A called the adversary. For accuracy guarantees, while we usually consider adaptive adversarial,
we will also consider non-adaptive adversarial queries chosen in advance–we still consider such a mechanism
to be interactive, because it does not know in advance what these queries will be. The main query class we
consider throughout this work is the class F of all counting queries, as well as sub-classes of it.

For the interactive setting, there is a privacy-preserving interactive mechanism which is called private mul-
tiplicative weight updating (PMW) mechanism.

Parameters: Data universe X with |X | = N . D is a subset of X with |D| = n. The number of queries

k, (ε, δ)− dp, (α, β)− acc. Put σ = 10·log(1/δ) log1/4N√
nε

, η = log1/4N√
n

, T = 4σ · (log k + log 1/β).

Input: Database D ∈ Xn corresponding to a histogram x ∈ RN
Algorithm:
Initialize: Set x0 = (1/N, · · · , 1/N),m = 0.
For t = 1, 2, · · · , k:

1. Receive ft
2. dt ←< ft, x > − < ft, xt−1 >
3. d̂t ← dt +At, At ∼ Lap(σ)

4. If d̂t > T : For all i s.t. ft[i] = 1, xt[i]← xt−1[i]eη; otherwise, xt[i]← xt−1[i].

Else if d̂t < −T : For all i: ft[i] = 0,xt[i]← xt−1[i]eη; otherwise, xt[i]← xt−1[i].
Else xt ← xt−1.

Normalize, xt[i]← xt[i]∑
i∈X xt[i]

.Update m← m+ 1.

5. If m > n
√

logN : abort and output ’failure’.
Else if |d̂t| > T , output the noisy answer < ft, x > +At. Else, output < ft, xt−1 >.
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In the t-th round, after the t-th query ft has been specified, we compute a noisy answer bat by adding
(properly scaled) Laplace noise to ft(x)—the “true” answer on the real database. We then compare this
noisy answer with the answer given by the previous round’s database ft(xt−1). If the answers are “close”,
then this is a “lazy” round, and we simply output ft(xt−1) and set xt ← xt−1. If the answers are “far”, then
this is an “update” round and we need to update or “improve” xt using a multiplicative weights re-weighting.
The intuition is that the re-weighting brings xt “closer” to an accurate answer on ft. In a nutshell, this
is all the algorithm does. The only additional step required is bounding the number of “update” rounds:
if the total number of update rounds grows to be larger than (roughly) n, then the mechanism fails and
terminates. This will be a low probability event.

We use at to denote the true answer on the database on query t, and ât denotes this same answer with noise
added to it. We use dt to denote the difference between the true answer at and the answer given by xt−1, and
d̂t to denote the difference between the noisy answer and the answer given by xt−1. The boolean variable
wt denotes whether the noisy difference was large or small. If d̂t is smaller (in absolute value) than ≈ 1/

√
n,

then this round is lazy. If d̂t is larger than threshold then this is an update round and we set m← m+ 1.

Definition 13.6 We say that a mechanism M is (α, β, k)−(adaptively) accurate for a database x, if when
it is run for k rounds, for any (adaptively chosen) counting queries, with all but β probability over the
mechanism’s coins ∀t ∈ [k], |at − ft(x)| ≤ α

Theorem 13.7 Let X be a data universe of size N . For any k, ε, δ, β > 0, the Private Multiplicative Weights
Mechanism above is an (ε, δ)−differentially private interactive mechanism. For any database of size n, the
mechanism is (α, β, k)−accurate for (adaptive) counting queries over X, where

α = O(ε−1n−1/2 · log(1/δ) log1/4(N) · (log k + log(1/β)))

The running time in answering each query is N · poly(n) · polylog(1/β, 1/ε, 1/δ).

The proof of the theorem can be found in [6].

13.4 Generalization of Boosting

In this section, we will discuss the generalization of boosting algorithm based on the margin theory.

We have known that boosting works by voting over a set of base hypotheses, where the result hypothesis as a
weighted combination of base hypotheses. As long as the base hypotheses are not so bad, the training error
will exponentially decay to zero with respect to the boosting iterations. Considering the test/generalization
error of boosting, it is surprising to find out that after the training error is reduced to zero, the test error
continues to go down with additional training. This fact is counter-intuitive because most of the time, we
assume that the ’over-fitting’ on training data will result in bad performance of generalization.

To explain this fact, the main observation is that boosting continues to enlarge the margin even after
the training error is reduced to zero. Consider a binary classification task with sample space X × {1,−1},
distribution D on X×{1,−1}, hypothesis spaceH, the voted classifier given by boosting f(x) = ΣNi=1αihi(x),
where the weights αs are normalized to have sum 1. We define the margin of a sample (x, y) ∈ X × {1,−1}
as yf(x). It is easy to see that margin is a number in [−1, 1], and that a sample is classified correctly if and
only if it has positive margin. Moreover, a large margin can be interpreted a ”confident” classification.

To visualize the observation, we plot the fraction of examples whose margin is at most θ as a function of
θ ∈ [−1, 1], we refer to these graph as margin distribution graph. In experiments, we observe that as the
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training progresses, the boosting algorithm tends to increase the margins associated with examples and
converge to a margin distribution in which most examples has large margins. The graph below is a demo
of margin distribution graph of a binary classification, where the short-dashed, long-dashed and solid curves
correspond to the margin distribution after 5, 100, 1000 iterations.

Now, we formalize the bound of generalization error of boosting by giving the following theorem given by
Robert E. Schapire and Yoav Freund in [7].

Theorem 13.8 Let S be a sample of n examples chosen independently at random according to D. Assume
that the base hypothesis space H is finite, and let δ > 0. Then with probability at least 1 − δ over random
choice of the training set S, every voted classifier f satisfies the following bound for all θ > 0:

PD[yf(x) ≤ 0] ≤ PS [yf(x) ≤ θ] +O(
1√
n

(
log n log |H|

θ2
+ log(1/δ))1/2)

This theorem states that if the voting classifier generates a good margin distribution, that is, most training
examples have large marins so that PS(yf(x) ≤ θ) is small for not too small θ, then the generalization error
is also small. In [7], it has also been shown that for the AdaBoost algorithm PS(yf(x) ≤ θ) decreases to
zero exponentially fast with respect to the number of boosting iterations if θ is not too large. These results
imply that the excellent performance of AdaBoost is due to its good margin distribution.

Breiman[8] also proved an upper bound for the generalization error of voting classifiers. This bound depends
only on the minimum margin, not on the entire margin distribution.

Theorem 13.9 Let θ0 be the minimum margin defined as

θ0 = min{yf(x) : (x, y) ∈ S}

, where S is the training set. If

H <∞, θ0 > 4

√
2

|H|
, R =

32log(2|H|)
nθ20

≤ 2n

then for any δ > 0, with probability at least 1− δ over the random choice of the training set S of n examples,
every voting classifier f satisfies the following bounds:

PD(yf(x) ≤ 0) ≤ R(log(2n) + log
1

R
+ 1) +

1

n
log(
|H|
δ

)

Breiman pointed out that this bound is sharper that that of Schapire’s, as the second term of this bound is

O( log nn ) while that in Schapire’s is O(
√

log n
n ).
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14.1 Reinforcement Learning: Basic Concepts

Simply put, reinforcement learning is the process of training models to take a sequence of decisions in
an environment that optimize the reward, usually in large-scale problems where dynamic programming is
inapplicable. Virtually all RL problems can be formalized as Markov Decision Process (MDP).

14.1.1 Markov Decision Process

Definition 14.1 A Markov Decision Process is a 4-tuple (S,A, P,R), where

• S is the set of states;

• A(s) is the set of available actions from state s ∈ S;

• P (s′|s, a) = P(St+1 = s′|St = s, at = a) is the transition probability that, in time t, the action a ∈ A
in state s would lead to state s′ in time t+ 1;

• R(s, a) is the expected reward received by taking action a at state s;

In the case when the decision-making process has infinite horizon, this tuple also includes a discouting factor
γ ∈ (0, 1). For finite horizon, γ = 1.

The goal of an MDP agent is to maximize the long term reward, defined as R , R(st+1, at+1) +
γR(st+2, at+2) + γ2R(st+3, at+3) + · · · . Yet, in most cases, instead of directly dealing with discrete set
of actions, we are dealing with policies.

A policy is defined as π : S → ∆(A), where π(s) gives the probability vector of choosing actions in A at
state s. For short, we write π(s) for a random variable of taking actions with the corresponding probabilities.

There are two tasks in an MDP control problem: how to evaluate a given policy π : S → A; how to find the
optimal policy π∗. The first task involves two value functions. The second task would be discussed in the
following chapters.

14.1.2 State Value Function

Definition 14.2 For a given policy π, at a certain state s, the state value function is defined as

vπ(s) , E

[ ∞∑
t=0

γtR(st, π(st))
∣∣∣s0 = s

]

14-1
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This is the expected return when starting from s and following policy π. The randomness comes from the
random action distribution and the transition probability.

14.1.3 State-Action Value Function

Definition 14.3 For a certain state s, a feasible action a in state s, and given policy π, the state-action
value function is defined as

Qπ(s, a) = E

[
R(s, a) +

∞∑
t=1

γtR(st, π(st))
∣∣∣s0 = s, a0 = a

]
This is the expected return when starting from s, taking action a, then following policy π.

Note that a does not necessarily follows π. Moreover, Qπ(s, a) = Es1
[
R(s, a) + γV π(s1, a1)

∣∣s0 = s, a0 = a
]
.

Therefore, if a follows π, then E[Qπ(s, a)] = V π(s).

14.1.4 Optimal Policy

With the definition of the two value functions, we now give a formal definition of the optimal policy.

Definition 14.4 A optimal policy π∗ satisfies: for any policy π and any state s, it holds V π
∗
(s) ≥ V π(s).

In the following chapters, we will discuss the existence of optimal policy and its computation.

14.2 Bellman Expectation Equation and Policy Evaluation

14.2.1 Bellman Expectation Equation

From the definition of the value function, we can generally see that it can be expressed in the form of a
transition function. More specifically,

vπ(s) = E

[ ∞∑
k=0

γkRt+k | st = s

]
(14.1)

= E

[
Rt + γ

∞∑
k=0

γkRt+1+k | st = s

]
(14.2)

= E [Rt | st = s] + γEst+1∼P (s,π(s))

[ ∞∑
k=0

γkRt+k

]
(14.3)

= R(s, π(s)) + γ
∑
s′

Pr[st+1 = s′|st = s, at = π(s)] · vπ(s′) (14.4)

where Rt represents reward at time t (which depends on the state and action at time t), and R(s, a) represents
the expectation of reward on state s and action a. Thus, we have

vπ(s) = R(s, π(s)) + γ
∑
s′

P (s′|s, π(s)) · vπ(s′),∀s ∈ S (14.5)
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which is known as Bellman Expectation Equation.

14.2.2 Evaluating the value function

Firstly, we define an operator according to Bellman Expectation Equation.

Definition 14.5 (Bellman Expectation Operator) The Bellman Expectation Operator Φ is defined as

Φ : RN → RN

v 7→ v′

such that

v′(s) = R(s, π(s)) + γ
∑
s′

P (s′|s, π(s)) · v(s′),∀s ∈ S (14.6)

where N = |S|.

To further discuss the property of Φ, we introduce what a γ-contraction mapping is.

Definition 14.6 (α-contraction mapping) Function φ : X → X is a α-contraction mapping w.r.t. || · ||p,
if ∀u, v ∈ X,

||φ(u), φ(v)||p < α||u, v||p (14.7)

where α ∈ [0, 1)

Theorem 14.7 (Banach Fixed Point Theorem) Every contraction mapping has a unique fixed point.

Now we point out that Φ is a γ-contraction mapping w.r.t. || · ||∞.

Theorem 14.8 Bellman Expectation Operator Φ is a γ-contracion mapping w.r.t. || · ||∞.

Proof: ∀u,v ∈ RN , let u′ = Φ(u),v′ = Φ(v). We have u′ − v′ = γ
∑
s′ P (s′|s, π(s)) · (u(s′) − v(s′)) ≤

γ
∑
s′ P (s′|s, π(s)) · ||u− v||∞ = γ||u− v||∞.

Now we know that Φ converge to a unique point. Thus, we can use the following algorithm to evaluate the
value function.

Algorithm 1 Solving Bellman Expectation Equation via Iteration

Output: The value function vector vπ w.r.t. a given policy π
Stochastically initialize v0

k ← 0
repeat

vk+1 ← Φ(vk)
k ← k + 1

until Convergence. Denote the result as vπ
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14.2.3 Greedy Method

Now given a policy π, we can get vπ through the above algorithm. Then in order to get an improved policy
π′, we employ a greedy method:

∀s ∈ S, π′(s) = argmax
a

[
R(S, a) +

∑
s′

P (s′ | s, a) vπ (s′)

]

Theorem 14.9 vπ(s) ≤ vπ
′
(s) for all s

Proof:

vπ(s) = R(s, π(s)) + γ
∑
s′

P (s′ | s, π(s)) vπ (s′)

≤ R (s, π′(s)) + γ
∑
s′

P (s′ | s, π′(s)) vπ (s′)

Written in matrix form as follows:

Rπ′ + γPπ′v
π ≥ Rπ + γPπvπ = vπ

Rπ′ ≥ (I− γPπ′) vπ

And we have:

‖P‖∞ = max
s

∑
s′

|Pss′ | = max
s

∑
s′

P [s′ | s, π(s)] = 1

Then ‖γP‖∞ = γ < 1. Since the radius of convergence of the power series (1 − x)−1 is 1, we can use its
expansion and write

(I− γPπ′)
−1

=

∞∑
k=0

(γPπ′)
k
.

Thus, if Z = (Y −X) ≥ 0, then
(
I− γPπn+1

)−1
Z =

∑∞
k=0

(
γPπn+1

)k
Z ≥ 0, which means

(
I− γPπn+1

)−1
preserves ordering. Then vπ

′
=
(
I− γPπn+1

)−1
Rπn+1

≥ vπ

Now our goal is to find out if there exists an unique optimal policy π∗, which has the property that:
∀s,vπ∗(s) ≥ vπ(s)

14.3 Finding the Optimal Policy

In the above section we’ve discussed about the value function. Now, let’s turn to the problem of finding the
optimal policy.

We’ve already known the definition of an optimal policy. Now we assume such policy exists, denoted as π∗.

Definition 14.10 (Policy Iteration) Using the Greedy Method above, we can obtain a method of iteration:
start from some policy π0, and compute vπ0 , get the ”greedy policy” of π0 (denoted as π1 ), and compute
V π1 ; ... We know the value function of πk should increase during the iteration. This approach is called
policy iteration, the value function of πk will converge to v∗.
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And based on Bellman Expectation Equation, we may guess that,

vπ
∗
(s) = max

a∈A

[
R(s, a) + γ

∑
s′

P (s′|s, a)vπ
∗
(s′)

]
,∀s ∈ S (14.8)

This is called the Bellman Optimal Equation. Similarly, we define an op operator according to this
equation.

Definition 14.11 (Bellman Operator) The Bellman Operator Φ∗ is defined as

Φ∗ : RN → RN

v 7→ v′

such that

v′(s) = max
a∈A

[
R(s, a) + γ

∑
s′

P (s′|s, a)v(s′)

]
,∀s ∈ S (14.9)

where N = |S|.

We point out that Φ∗ is also a contraction mapping.

Theorem 14.12 Bellman Operator Φ∗ is a γ-contraction mapping w.r.t. || · ||∞.

Proof: ∀u,v ∈ RN , let u′ = Φ∗(u),v′ = Φ∗(v). For a state s ∈ S, let

a = argmax
b

[
R(s, b) + γ

∑
s′

P (s′|s, b)v(s′)

]

a′ = argmax
b

[
R(s, b) + γ

∑
s′

P (s′|s, b)u(s′)

]
We have

v′(s)− u′(s) =

[
R(s, a) + γ

∑
s′

P (s′|s, a)v(s′)

]
−

[
R(s, a′) + γ

∑
s′

P (s′|s, a′)u(s′)

]

≤

[
R(s, a) + γ

∑
s′

P (s′|s, a)v(s′)

]
−

[
R(s, a) + γ

∑
s′

P (s′|s, a)u(s′)

]
= γ

∑
s′

P (s′|s, a)(v(s′)− u(s′))

≤ γ
∑
s′

P (s′|s, a)||v − u||∞

= γ||v − u||∞

Similarly we show that u′(s)− v′(s) ≤ γ||v − u||∞. Thus, we have ||v′ − u′||∞ ≤ γ||v − u||∞.

Now we know that Φ∗ converge to a unique fixed point. So similar to Algorithm 1, we can use a iteration
approach to compute the unique fixed point v∗ of Φ∗

We have following results.
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Algorithm 2 Value Iteration

Output: The unique fixed point v∗ of Φ∗

Stochastically choose a policy π0 ,let v0 be its value function
k ← 0
repeat

vk+1 ← Φ∗(vk)
k ← k + 1

until Convergence. Denote the result as v∗

Theorem 14.13 Let π0 be an arbitrary policy and v0 = vπ0 . Then (Φ∗(v0))(s) ≥ v0(s),∀s ∈ S

Proof: Note that for all s ∈ S,

v0(s) = R(s, π(s)) + γ
∑
s′∈S

P (s′|s, π(s))v0(s′)

by the Bellman Expectation Equation, and

(Φ∗(v0))(s) = max
a∈A

[R(s, a) + γ
∑
s′∈S

P (s′|s, a)v0(s′)]

by the definition of Φ∗.

Comparing the right sides immediately yields (Φ∗(v0))(s) ≥ v0(s)

Theorem 14.14 Let π0 be an arbitrary policy and v0 = vπ0 and vk+1 = Φ∗(vk).Then vk+1(s) ≥ vk(s),∀s ∈
S

Proof: we can prove this by induction since we already have (Φ∗(v0))(s) ≥ v0(s),∀s ∈ S

suppose we have vk(s) ≥ vk−1(s),∀s ∈ S

vk+1 = (Φ∗(vk))(s) = max
a∈A

[R(s, a) + γ
∑
s′∈S

P (s′|s, a)vk(s′)]

vk = (Φ∗(vk−1))(s) = max
a∈A

[R(s, a) + γ
∑
s′∈S

P (s′|s, a)vk−1(s′)]

Comparing the right sides and it’s trivial that vk+1(s) ≥ vk(s)

And the following fact is trivial.

Theorem 14.15 Let π0 be an arbitrary policy and v0 = vπ0 and vk+1 = Φ∗(vk). Then vk converges to v∗

which satisfies the Bellman Optimal Equation.

Theorem 14.16 Let v∗ is the fixed point of Φ∗. Then there exists a policy π∗ whose value function is v∗.

Proof: let π∗(s) := argmaxa[R(s, a) + γ
∑
s′ P (s′|s, a)v∗(s′)]
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vπ∗(s) = R(s, π∗(s)) + γ
∑
s′

P (s′|s, π∗(s))vπ∗(s′)

= R(s, π∗(s)) + γ
∑
s′

P (s′|s, π∗(s))[R(s′, π∗(s′)) + γ
∑
s′′

P (s′′|s′, π∗(s′))vπ∗(s′′)]

= · · ·
= v∗(s)

Now we have proved the existence of π∗ and gives a way to calculate it.And finally we have:

Theorem 14.17 Let v∗ be the value function of the optimal policy, assume ||vk − v∗||∞ ≤ δ. Let πk be the
greedy policy w.r.t. vk, then ||vπk − v∗||∞ ≤ γ

1−γ δ.

Proof: According to the assumption ||vk − v∗||∞ ≤ δ and that the greedy strategy is to choose πk(s) :=
argmaxa[R(s, a)+γ

∑
s′ P (s′|s, a)vk(s′)], so we know that if we choose a wrong action due to the δ−difference

at state s, time t, and follow the best strategy since then, we would only be γδ less than the best strategy
in expectation.

By the same argument, if we make two mistakes successively, then our expectation value drops at most
γδ + γ2δ

So we get ||vπk − v∗||∞ ≤ (γ + γ2 + · · · )δ = γ
1−γ δ

References
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Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.
They may be distributed outside this class only with the permission of the Instructor.

15.1 Monte Carlo Decision Process(MDP)

Monte Carlo methods are ways of solving the reinforcement learning problem based on averaging sample
returns. Here we define Monte Carlo methods only for episodic tasks. For all s ∈ S, there are two Monte
Carlo (MC) methods, first-visit MC method and every-visit MC method.

First-visit MC: Estimate the value of a state as the average of the returns that have followed the first
visits to the state, where a first visit is the first time during a trial that the state is visited.
Every-visit MC: Estimate the value of a state as the average of the returns that have followed all visits to
the state.

It can be trivially implied that the first-visit MC method is a sound method, since the samples are of
independently identically distributed estimate of vπ(s) with finite variance. By the law of large numbers, the
sequence of averages of these estimates converges to their expected value. Each average is itself an unbiased
estimate, and the standard deviation of its error falls as 1√

N
, where N is the number of returns averaged.

Every-visit MC is less straightforward. Surprisingly, however, the every-visit MC method is also a sound
method.

Lemma 15.1 Suppose v1, v2 · · · are random variables and have common mean. Let N take positive integers.
Suppose E[vj |N ≥ j] = E[v1]. Then

E
[∑N

j=1 vj

]
E[N ]

= E[v1]

Proof:

E
N,v

 N∑
j=1

vj

 =

∞∑
n=1

Pr[N = n]E

 n∑
j=1

vj |N = n

 (15.1)

=

∞∑
n=1

n∑
j=1

Pr[N = n]E[vj |N = n] (15.2)

=

∞∑
j=1

Pr[N ≥ j]E[vj |N = j] (15.3)

= E[N ] · E[vj ] (15.4)

15-1
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Theorem 15.2 The Every-visit MC method is a sound method for policy evaluation.

Proof: For trajectories k = 1, 2 · · ·K, let vk,j be the return of state s of k-th trajectory for the j-th visit.
Then the Every-visit MC method has the estimation

estimation =

∑K
k=1

∑
j vk,j∑K

k=1N(k)

where N(k) = # visits of s in trajectory k.
Let’s define E as the limit of estimation, e.g.,

E := lim
K→∞

∑K
k=1

∑
j vk,j∑K

k=1N(K)
= lim
K→∞

1
m(K)

∑K
k=1

∑
j vk,j

1
m(K)

∑K
k=1N(k)

=
limK→∞

1
m(K)

∑K
k=1

∑
j vk,j

limK→∞
1

m(K)

∑K
k=1N(k)

where m(K) = # trajectories in which s is visited.
To prove the method is a sound method, it is sufficient to prove

E = vπ(s)

Let N be the (random) number of visits of s in an trajectory, vj be the (random) return of s for the j-th
visit. Clearly, v1, v2 · · · have common mean. According to lemma 15.1

E =
E
[∑N

j=1 vj |N ≥ 1
]

E[N |N ≥ 1]
= E[v1|N ≥ 1] = E[v1] = vπ(s)

Suppose our state sequence in a trajectory is S1, S2, · · · , St · · · . We need to check if St is not in the sequence
S1, S2, · · · , St−1 in First-visit MC method while we don’t need to check it in Every-visit MC method. In
practice, Every-visit MC is more data efficient.

15.2 Temporal-Difference Learning (TD-Learning)

15.2.1 TD(0) Algorithm

Here we present TD(0) algorithm, for evaluating a policy in the case where the environment model is
unknown. The algorithm is based on Bellman’s equations giving the value of a policy π:

vπ(s) = E[R(s, a)] + γ
∑
s′

Pr[s′|s, π(s)]vπ(s′)

= E [R(s, π(s)) + γ · vπ(s′)|s]

Suppose during the sampling process, we sample a new state st+1 and get reward Rt when taking a action
according to π in state st. The TD(0) algorithm updates the policy values according to the following:

v(st)← (1− αt)v(st) + αt [Rt + γ · v(st+1)]

= v(st) + αt [Rt + γ · v(st+1)− v(st)]

where αt ∈ (0, 1). The term [Rt + γ · v(st+1)− v(st)] is called the temporal difference of v values, which
justifies the name of the algorithm.
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Theorem 15.3 Assume that
∑∞
t=0 αt = ∞, and

∑∞
t=0 α

2
t < ∞. Then, the TD(0) algorithm converges to

v(s).

15.2.2 TD(λ) Algorithm

The idea of TD(λ) consists of using multiple steps ahead, where TD(0) only uses one step ahead. Thus, for
n > 1 steps, we would have the update

v(st)← v(st) + αt(G
(n)
t − v(st))

where G
(n)
t is defined by

G
(n)
t = Rt + γRt+1 + · · ·+ γn−1Rt+n−1 + γnv(st+n)

Comparing to TD(0), the normal defined TD(n) uses more information in each iteration. However it has
longer delays, e.g., the current state would be updated only after n steps. Moreover, we could only update

state once a time. But TD(λ) beautifully solves those problems by using Gλt instead of G
(n)
t , where

Gλt = (1− λ)

∞∑
n=0

λnG
(n)
t , λ ∈ [0, 1]

is based on the geometric distribution over all G
(n)
t . Thus, the main update becomes

v(st)← v(st) + αt(G
λ
t − v(st))

and we get the main steps of TD(λ) algorithm:

1. For all s ∈ S, E0(s) = 0, Et(s) = γλEt−1(s) + I[st = s].

2. δt ← Rt + γ · v(st+1)− v(st).

3. For all s ∈ S, v(s)← v(s) + αt · δtEt(s).

15.3 Q-learning

To find the optimal policy in the unknown model, e.g., the transition and reward probabilities are unknown,
we can’t directly apply iteration based on the Bellman Optimal Equation. Note that the optimal policy or pol-
icy value can be straightforwardly derived from state-action value function Q via: π∗(s) = arg maxa∈AQ(s, a)
and v∗(s) = maxa∈AQ(s, a).

The Q-learning algorithm is based on the equations giving the optimal state-action function Q∗:

Q∗(s, a) = E[R(s, a)] + γ
∑
s′∈S

Pr[s′|s, a]v∗(s′)

= Es′
[
R(s, a) + γmax

a∈A
Q∗(s′, a)

]
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Similar to TD-learning, we update Q(s, a) with real experience as follows:

Q(st, at)← (1− αt)Q(st, at) + αt

[
R(st, at) + γmax

a′
Q(st+1, a

′)
]

= Q(st, at) + αt

[
R(st, at) + γmax

a′
Q(st+1, a

′)−Q(st, at)
]

It’s remain to specify how to choose actions. Note that random selection is not a good idea, since it doesn’t
update the current best Qt frequently, especially when there are a lot of actions. On the other hand, a bad
initial value can invalidate the ”Choose only the current arg maxaQt(s, a)” method, which can be viewed as
keeping doing exploitation but ignoring exploration.

15.3.1 Action Selection Policy

To select actions, a standard choice in reinforcement learning is the so called ε-greedy policy, which consists
of selecting with probability (1 − ε) the greedy action from state s, that is, arg maxa∈AQt(s, a), and with
probability ε a random action from s, for some ε ∈ (0, 1). Thus method ensures that if enough trials are
done, each action will be tried an infinite number of times, thus ensuring optimal action are discoverd.

We generalize the different types of the action selection policies into on-policy learning and off-policy learning.

15.4 On-Policy and Off-Policy Learning

Reinforcement learning algorithms include two components: a learning policy, which determines the action
to take, and an update rule, which defines the new estimate of the optimal value function.

For an off-policy learning algorithm, the update rule does not necessarily depend on the learning policy.
Q-learning is an off-policy algorithm since its update rule is based on the max operator and the comparison
of all possible actions a′, yet its learning policy is based on the ε-greedy policy.

On-Policy learning algorithms are the algorithms that evaluate and improve the same policy which is being
used to select actions. Some examples of On-Policy algorithms are Policy Iteration, Value Iteration and
Monte Carlo for On-policy.
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