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8.1 Support Vector Machine (SVM)

8.1.1 KKT Conditions

Assume z*; A*, u* are the optimal solutions of (P) and (D) (which we mentioned in lectures before) respec-
tively, we have:

1. VaL(z; A, )

wene e =0
2. gi(a*) <0,hi(a*) = 0,Vi € [n]
3. AF >0,V € [n]

4. X * gi(z*) = 0,Vi € [n]

These four conditioins are called KKT conditions, and KKT conditions are necessary and sufficient condi-
tions.

8.1.2 Support Vector
Recall the Max Margin Classifier:

. 1
(P)  min Sl
st yi(wha; +b) > 1,Vi € [n],
and its dual form:
1
(D) m)}n 5 Z Z )\i)\jyiij;rxj - Z )\z
% g [

Z)\iyi =0

We apply the KKT condition 1 and 4 on it and now we have:
1w =37, Ny
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2. Ailyi(w @i +b) — 1] = 0,Vi € [n]

Af > 0 only if y;(wlz; +b) — 1 =0, thus:

w' = Z e

icl

where I is the points nearest to the hyperplane, also known as Support Vector.

8.1.3 Situations without solid constraints

In situations where there’s always points can’t match the constraints, we get another form of question:

w,b,e

1 n
(P) min §Hw||g+c*26i
i=1
st yi(wlz; +b) >1—¢,Vi € [n],
€; > 0,Vi € [n]

and its dual form(see proof in Appendix A):

o1
(D) m}{n 5 E E )\i)\jyiyjl‘,?.l‘j - E )\z
% J i
s.t.c> N >0,V € [n]

> Ay =0

(P) can be rewritten as the following form:

.1 -
(P)  min Zffwl3+ex D [1-gi(w e+ b))
’ i=1

where [|+ denotes:

= u ifu>0
U+ = 0 otherwise

Here the former term can be viewed as the regularization term, and the latter term can be viewed as hinge
loss, which means [1 — yf(z)];, where y denotes the label and f(z) denotes the predict result.

8.1.4 Expand the dim of data

Suppose we have four 2-d data points with their labels as follows:
((L]-)v]-) ((L_l)v_l) ((_171)a_1) ((_L_l)vl)
This is actually the famous XOR example, and apparently these four data points are not linear separable.

However, by expanding the dim of data, we transform each 2-d data point z = (x!,22) into ¢(z) =
(1?2, (2?)?, 2122, 21, 2?), and these four 5-d data points are actually linear separable, which means the
original data can be separated by a quadratic curve.
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8.2 Bootstrap-Aggregation (Bagging)

Bootstrap-Aggregation is an integration technique to train a classifier.

Suppose that we have a dataset consisting of n samples, one choice is to train a classifier directly on the
dataset. But the classifier may be weak.

Following Bootstrap-Aggregation, we can draw n samples from the original dataset with replacement, and
combine them into a new dataset. After m times of the same operation, we can get m new datasets containing
n samples each, on which we train m weak classifiers respectively. Finally we integrate the m weak classifiers
to get a more powerful classifier.

It is worth mentioning that Bootstrap-Aggregation is not Boosting. Instead, Boosting was proposed one
year later than Bootstrap-Aggregation and surpassed it in a large margin.

Appendix A

We refer \; > 0 and p; > 0 as the Lagrange multiplier associated with 1 — ¢; — y; (w” 2; + b) and —e¢;, and
we define the Lagrangian L (assume w’s dimension is m): R™ x R X R®" x R" x R" — R as

L(w7 b7 67 )\7 /“L)

1 n n n
= §||w||2 +C- Y e+ > Nl —e—yi(w i +b) + > pi(—e)

=1 =1 =1

= %HWH2 —w’ Z Aiyiwi + Z(C =X — )€ + Z Ai — bz AiYi 5
i=1 i=1 i=1 i=1

then we have:

g\, p) = inf L(w,b, e\, p)

w,b,e

1 n ) n n
—§||Z)\iy¢$i|| +Z)\i, )\i+Mi:C/\Z)\iyi:0.
i=1 i=1 i=1
else

— 00,

Thus, the corresponding Lagrange dual problem is:

1 n n
max —§|| Z Aiyiwi||® + Z Ai
i=1 i=1

s.t. Xn: Aiyi =0,
=1

0<N<C,i=0,1,..,n.
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