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7.1 Game Theory and Minimax Theorem

To recap, we introduced the case of a zero-sum, one-shot, two player matrix game. The game is described
by the payoff matix M, whose element m;; denotes the value player A sends to player B when actions ¢ and
j are chosen respectively.

Today, we continue our discussion on the result of such games,

7.1.1 Pure Strategy

When executing a pure strategy, a player only makes deterministic choices. Here’s how such a game would
unfold:

1. Alice chooses a row i.
2. Bob, after observing Alice’s strategy (in this case, row ), chooses a column j.
3. Alice pays M;; to Bob.
Since we assume both players are rational agents, the result is simple:
e When Alice goes first, min max M;; is payed.
K3

J

e When Bob goes first, maxmin M;; is payed.
J %

It can be proved that the second player always have the upper hand. In mathematical terms,

min max M;; > max min M;;
% J J i

7.1.2 Mixed Strategy

A mixed strategy can be viewed as a probabilistic combination of pure strategies. A mixed strategy game
would proceed as follows:

1. Alice chooses a probability distribution p over the rows.
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2. Bob, after observing Alice’s strategy (i.e. p), chooses probability distribution ¢ over the columns.
3. Alice pays Bob p" Mgq.

Since the choices are probabilistic, p" Mg is the expectation of final results. Again, assuming Alice and Bob
are rational, we get:

e When Alice goes first, an expected minmaxp' Mgq is payed.
P q

e When Bob goes first, an expected maxminp' Mgq is payed.
a P

Note that p, ¢ cannot be any arbitrary vector, but are rather probability vectors with non-negative entries
that add up to one.

The eminent question is: what’s the relationship between these values? Does the second player still hold an
advantage? John von Neumann answered this is his 1928 paper[VN28].
Theorem 7.1 (John von Neumann Minimax Theorem)

1. minmaxp' Mg =maxminp' Mg

P q a P

2. Equivalently, A(p*,q*) s.t. Vp,q, p*Mq < p*Mq* < pMq*, and (p*,q*) is the equilibrium.
The original proof was given via a generalization of the Brouwer fixed-point theorem. Although topology is
beyond the scope of this course, a proof using ML theory will be given in future lectures.
We also consider a generalization of this theorem, given by Maurice Sion[S58], which would soon come in
handy in our following discussion on Lagrange duality.
Theorem 7.2 (Sion’s Minimax Theorem)
Let f(x,y) be a function. If for any fized y, f(x,y) is convex in x, and for any fized x, f(x,y) is concave in
y, Then:

1. minmax f(z,y) = maxmin f(z,y)
T Yy y T

2. A", y*) s.t. Va,y, f(2*y) < f(@",y") < flz,y7)
7.2 Lagrange Duality
In optimization, duality allows optimization problems to be viewed from two perspectives: the primal form

and the dual form. Adopting the dual form allows for new insight, while often preserving the optimal value.

Let’s consider the following primal optimization problem:

~

(P)  min S
st.  gi(z) <0, i€ [m)
=0. i
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Where f and g;’s are convex functions, and h;’s are linear. The P here denotes primal form.

We now transform this problem to its dual form.

Step 1. It can be shown that the following optimization problem is equivalent to the primal problem,

mln max f(z)+ Z Xigi(x) + 2": pihi()
=1

st.A>0

as when one of the constraints is not satisfied, the corresponding A; or u; can make the function value
arbitrarily large. We call this new objective function the Lagrange function, denoted as L(x; A, ).

Lz A, 1) +ZAzgz +> pihi(x)
=1

Step 2. We now apply the Sion’s Minimax Theorem on this min-max optimization problem. The theorem
constraints are satisfied (L(x; Ao, po) is the non-negative weighted sum of convex functions; L(zg; A, p) is
linear, therefore concave in A, ). Thus

L(z; A L(z; A,
U RS, A ) = g, e L A )

Combining steps 1 and 2, we now consider the problem Amiéomm L(z; A\, ). Solving V,L(z; A\, ) = 0, we
Ny
get 2% = (A, p).
Step 3. Substituting x with @(A, 1), we get the dual problem:
(D) H;ixf( (/\:u +Z>\zgz )\ﬂ +Z.uz i

=1
st.A>0

7.3 Example: Optimal Margin Classifier

Previously, we posed the optimization problem for finding the optimal margin classifier:
1
P in  —||wl|3
(P) min - Sjwllz
st yi(wTz; +b) > 1,Vi € [n],

We now develop its dual form. The problem can be rewritten as:

— Ai(l—y; i+ b
max min - \|w||2+21 yi(w”a + b))

st.A>0

Setting the derivative of L with respect to w, b to zero, we get
n
w= Z AiYii
i=1
n
Z Ay =0
i=1
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Plugging this back to the Lagragian function, we get the dual form

1
(D) min 5 g g )\i)\jyiijjzj - E i
P i
st. A >0, i€[n]

ZM% =0

Note that the dual problem is still a quadratic programming problem: the first term is a quadratic form
derived from a Gram matrix, which is positive-semidefinite.
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