Lecture 6: Learning Algorithms

Lecturer: Liwei Wang Scribe: Yizao Tang,Tianyi Wu,Zhaoji Zhang,Zirui Zhou,Suhan Ling, Yanzhe Wang

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications. They may be distributed outside this class only with the permission of the Instructor.

6.1 Recap : VC Theory

VC Theory is data independent \& algorithm independent, and only model dependent. $P_{D}(Y \neq f(X)) \leq$ $P_{S}(Y \neq f(X))+O\left(\sqrt{\frac{d \ln n+\ln \frac{1}{\delta}}{n}}\right)$ for $d=\operatorname{VCD}(F)$. When $d>n$, we called the model overparametrization, then we can't use VC Theory to analysis generalization. In deep learning, d is often greater than the number of parameters, so overparametrization often occurs in large model. It shows that the algorithm is important as well.

6.2 Linear Classification

Given training data set $\left(x_{i}, y_{i}\right), \cdots,\left(x_{n}, y_{n}\right), x_{i} \in \mathbf{R}^{d}, y_{i} \in\{ \pm 1\}$. Design an efficient algorithm to tell if the training data are linear separable. $\mathcal{F}=\left\{\operatorname{sgn}\left(w^{T} x+b\right): w \in \mathbf{R}^{d}, b \in \mathbf{R}\right\}$. We can use linear programming to solve it.

When the solution is not unique, we try to find the "best" seperating line. We define the margin be the minimal distance between every point to the separating line, and we also want to maximize the margin, called max margin classifier. Formally, we want to maximize $\min _{i}\left\{y_{i}\left(w^{T} x_{i}+b\right)\right\},\|w\|_{2}=1$. We write it down in the form of programming:

$$
\begin{gathered}
\max _{w, b, t} t \\
\text { s.t. } y_{i}\left(w^{T} x_{i}+b\right) \geq t, \forall i \in[n] \\
\|w\|_{2}=1
\end{gathered}
$$

The t here is called a slack. $t>0$ indicates that the data set is separable.
Now we need to introduce the Convex Optimization Problem, which also have known efficient algorithm:

$$
\begin{aligned}
& \min _{x} \quad f(x) \\
& \text { s.t. } g(x) \leq 0 \\
& h(x)=0
\end{aligned}
$$

where f is convex function, and g, h is linear function.

If we only concern the $\frac{w}{\|w\|_{2}}$ and b, we could rewrite it in the form of quadratic programming and transform our problem into Convex Optimization Problem, which is:

$$
\begin{aligned}
& \min _{w, b} \frac{1}{2}\|w\|_{2}^{2} \\
& \text { s.t. } y_{i}\left(w^{T} x_{i}+b\right) \geq 1, \forall i \in[n]
\end{aligned}
$$

Homework 1: Prove they have the same solution.

6.3 Minmax Theory and Duality

6.3.1 Maxtrix Game, two player, Zero Sum Game, one-shot

Zero Sum Game : the sum of the profit of Alice and Bob is zero.
one-shot : only play once.
for this kind of game, we could write a payoff matrix M

$$
\left(\begin{array}{ccccc}
\left(a_{1}, b_{1}\right) & \ldots & \left(a_{1}, b_{j}\right) & \ldots & \left(a_{1}, b_{n}\right) \\
\ldots & \ldots & \ldots & \ldots & \ldots \\
\ldots & \left(a_{i}, b_{1}\right) & \ldots & \left(a_{i}, b_{j}\right) & \ldots \\
\ldots & \ldots & \ldots & \left(a_{i}, b_{n}\right) \\
m & \ldots & \ldots \\
\left(a_{m}, b_{1}\right) & \ldots & \left(a_{m}, b_{j}\right) & \ldots & \left(a_{m}, b_{n}\right)
\end{array}\right) .
$$

The Cell $\left(a_{i}, b_{j}\right)$ describes the reward of Alice and Bob when they choose the action i and j . If we substitute the $\left(a_{i}, b_{j}\right)$ as $m_{i, j}$, we have

$$
\quad\left(\begin{array}{ccccc}
m_{1,1} & \ldots & m_{1, j} & \ldots & m_{1, n} \\
\ldots & \ldots & \ldots & \ldots & \ldots \\
m_{i, 1} & \ldots & m_{i, j} & \ldots & m_{i, n} \\
\ldots & \ldots & \ldots & \ldots & \ldots \\
m_{m, 1} & \ldots & m_{m, j} & \ldots & m_{m, n}
\end{array}\right) .
$$

Let M be the payoff matrix. Then we describe the (Pure Strategy) matrix game:

1. Alice chooses a row i in M
2. Bob chooses a column j after observing Alice's action
3. Alice pays $m_{i, j}$ to Bob

As everyone tries to maximize his profit, Alice actually pays

$$
A=\min _{i}\left\{\max _{j}\left\{m_{i, j}\right\}\right\}
$$

When Bob moves first, Alice choose a row after Bob's action, Alice actually pays

$$
B=\max _{j}\left\{\min _{i}\left\{m_{i, j}\right\}\right\}
$$

Then we always have $A \geq B$, the player moves last has the advantage.
Homework 2: Prove that A and B have a certain Ordered Relation that $A \geq B$.

