Machine Learning

Fall 2023

Lecture 6: Learning Algorithms

Lecturer: Liwei Wang Scribe: Yizao Tang, Tianyi Wu, Zhaoji Zhang, Zirui Zhou, Suhan Ling, Yanzhe Wang

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications. They may be distributed outside this class only with the permission of the Instructor.

6.1 Recap : VC Theory

VC Theory is data independent & algorithm independent, and only model dependent. $P_D(Y \neq f(X)) \leq P_S(Y \neq f(X)) + O(\sqrt{\frac{d \ln n + ln \frac{1}{\delta}}{n}})$ for d = VCD(F). When d > n, we called the model **overparametrization**, then we can't use VC Theory to analysis generalization. In deep learning, d is often greater than the number of parameters, so overparametrization often occurs in large model. It shows that the algorithm is important as well.

6.2 Linear Classification

Given training data set $(x_i, y_i), \dots, (x_n, y_n), x_i \in \mathbf{R}^d, y_i \in \{\pm 1\}$. Design an efficient algorithm to tell if the training data are linear separable. $\mathcal{F} = \{\operatorname{sgn}(w^T x + b) : w \in \mathbf{R}^d, b \in \mathbf{R}\}$. We can use linear programming to solve it.

When the solution is not unique, we try to find the "best" separating line. We define the **margin** be the minimal distance between every point to the separating line, and we also want to maximize the margin, called **max margin classifier**. Formally, we want to maximize $\min_i \{y_i(w^T x_i + b)\}, \|w\|_2 = 1$. We write it down in the form of programming:

$$\max_{\substack{w,b,t \\ w,t \in I}} t$$

s.t. $y_i(w^T x_i + b) \ge t, \forall i \in [n]$
$$\|w\|_2 = 1$$

The t here is called a **slack**. t > 0 indicates that the data set is separable.

Now we need to introduce the Convex Optimization Problem, which also have known efficient algorithm:

$$\min_{x} \quad f(x)$$

s.t. $g(x) \le 0$
 $h(x) = 0$

where f is convex function, and g, h is linear function.

If we only concern the $\frac{w}{\|w\|_2}$ and b, we could rewrite it in the form of quadratic programming and transform our problem into Convex Optimization Problem, which is:

$$\min_{w,b} \frac{1}{2} \|w\|_2^2$$

s.t. $y_i(w^T x_i + b) \ge 1, \ \forall \ i \in [n]$

Homework 1: Prove they have the same solution.

6.3 Minmax Theory and Duality

6.3.1 Maxtrix Game, two player, Zero Sum Game, one-shot

Zero Sum Game : the sum of the profit of Alice and Bob is zero.

one-shot : only play once.

for this kind of game, we could write a payoff matrix M

В	ob 1	•••	j .	••	n
Alice					
1	(a_1, b_1)		(a_1, b_j)		(a_1, b_n)
		•••	•••	• • •	
i	(a_i, b_1)	•••	(a_i, b_j)	• • •	(a_i, b_n)
• • •					
m	$\langle (a_m, b_1) \rangle$		(a_m, b_j)		(a_m, b_n)

The Cell (a_i, b_j) describes the reward of Alice and Bob when they choose the action i and j. If we substitute the (a_i, b_j) as $m_{i,j}$, we have

```
Bob 1 ... j ... n

Alice

1 \begin{pmatrix} m_{1,1} & \dots & m_{1,j} & \dots & m_{1,n} \\ \dots & \dots & \dots & \dots & \dots & \dots \\ m_{i,1} & \dots & m_{i,j} & \dots & m_{i,n} \\ \dots & \dots & \dots & \dots & \dots & \dots \\ m_{m,1} & \dots & m_{m,j} & \dots & m_{m,n} \end{pmatrix}
```

Let M be the payoff matrix. Then we describe the (Pure Strategy) matrix game:

- 1. Alice chooses a row i in M
- 2. Bob chooses a column j after observing Alice's action
- 3. Alice pays $m_{i,j}$ to Bob

As everyone tries to maximize his profit, Alice actually pays

$$A = \min_{i} \{\max_{j} \{m_{i,j}\}\}$$

When Bob moves first, Alice choose a row after Bob's action, Alice actually pays

$$B = \max_{j} \{\min_{i} \{m_{i,j}\}\}$$

Then we always have $A \ge B$, the player moves last has the advantage.

Homework 2: Prove that A and B have a certain Ordered Relation that $A \ge B$.