Machine Learning

Lecture 5: VC Theory - Generalization

Lecturer: Liwei Wang Scribe: Xinyu Deng, Yusen Wu(1806), Shiyuan Feng, Jingxuan Zheng, Yang He, Jiqxin Ge

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications. They may be distributed outside this class only with the permission of the Instructor.

5.1 Review

As for the case where $|\mathcal{F}|=\infty$, note that we have:

$$
\begin{align*}
& P\left(\exists f \in \mathcal{F} \quad P_{D}(Y \neq f(x))-\frac{1}{n} \Sigma_{i=1}^{n} 1\left[Y_{i} \neq f\left(x_{i}\right)\right] \geq \epsilon\right) \\
\leq & 2 P\left(\exists f \in \mathcal{F} \quad \frac{1}{n} \sum_{i=1}^{n} 1\left[Y_{i} \neq f\left(x_{i}\right)\right]-\frac{1}{n} \Sigma_{i=n+1}^{2 n} 1\left[Y_{i} \neq f\left(x_{i}\right)\right] \geq \frac{\epsilon}{2}\right) \quad \text { (Double Sample Trick) } \\
= & 2 E_{x_{1} y_{1}, \cdots, x_{n} y_{n}}\left\{P_{\sigma \in S_{i n}}\left(\exists f \in \mathcal{F} \quad \frac{1}{n} \Sigma_{i=1}^{n} 1\left[Y_{\sigma(i)} \neq f\left(X_{\sigma(i)}\right]-\cdots \geq \frac{\epsilon}{2}\right)\right\} \leq N(2 n) c_{1} e^{-c_{2} n \epsilon^{2}}\right. \tag{Symmetrization}
\end{align*}
$$

We define:

$$
\begin{gather*}
N^{\mathcal{F}}\left(x_{1}, y_{1}, \cdots, x_{n}, y_{n}\right):=\left|\left\{\left(f\left(x_{1}\right), f\left(x_{2}\right), \cdots, f\left(x_{n}\right)\right): f \in \mathcal{F}\right\}\right|, \quad f\left(x_{i}\right) \in\{0,1\} \tag{5.2}\\
N^{\Phi}\left(\delta_{1}, \cdots, \delta_{n}\right):=\left|\left\{\left(\phi_{f}\left(\delta_{1}\right), \cdots, \phi\left(\delta_{n}\right)\right): \phi_{f} \in \Phi\right\}\right|, \text { where } \delta_{i}=\left(x_{i}, y_{i}\right), \phi_{f}\left(\delta_{i}\right)=I\left[f\left(x_{i}\right) \neq y_{i}\right] \tag{5.3}\\
N^{\mathcal{F}}(n):=\max _{x_{1}, y_{1}, \ldots, x_{n}, y_{n}} N^{\mathcal{F}}\left(x_{1}, y_{1}, \ldots, x_{n}, y_{n}\right) \tag{5.4}\\
N^{\Phi}(n)=\max _{\delta_{1}, \cdots, \delta_{n}} N^{\Phi}\left(\delta_{1}, \ldots, \delta_{n}\right) \tag{5.5}
\end{gather*}
$$

where Φ is a set of indicator functions. (Note that these two sets are same in size)
From the last lecture we have known that When n grows past some threshold (say d), the expressiveness of Φ will fall short. So we speculate that

$$
\begin{gather*}
N^{\Phi}(n)\left\{\begin{array}{cc}
=2^{n}, & n \leq d \\
\leq \sum_{k=0}^{d}\binom{n}{k}=O\left(n^{d}\right), & n>d
\end{array}\right. \tag{5.6}\\
\left|\left\{\left(\phi\left(y_{1}\right) \rightarrow n_{1}, \ldots, \phi\left(y_{n}\right) \rightarrow n_{n}\right): \phi \in \Phi\right\}\right| \leq \sum_{k=0}^{d}\binom{n}{k} \tag{5.7}
\end{gather*}
$$

We have to proof the following inequality:

$$
\begin{equation*}
N^{\Phi}(n) \leq \sum_{k=0}^{d}\binom{n}{k} \quad \text { for } \quad n>d \tag{5.8}
\end{equation*}
$$

5.2 Proof for Inequality(5.8)

Let's consider the special case first- From our assumption, we know that when $d+1$, there is a case of

$$
\begin{equation*}
\left(\phi\left(x_{1}\right), \phi\left(x_{2}\right), \ldots, \phi\left(x_{n}\right)\right) \tag{5.9}
\end{equation*}
$$

that cannot be obtained. In this special case, we assume that we cannot obtain $d+1$-zero cases. Which means that we can only have at most d zeros in this equation.
There are totally

$$
\begin{equation*}
\sum_{k=0}^{d}\binom{n}{k} \tag{5.10}
\end{equation*}
$$

possible value assignments that have less than $d+1$ zeros.
Special cases are limited, so consider turning general cases into special cases. We will give the complete proof next.

Proof: First, we list all the situations that cannot be obtained and consider what happen at 1-st component. There are three possibility,

0 as 1-st component,eg:

$$
\left\{\begin{array}{l}
0, *, 1 \cdots \\
0,1, * \cdots \\
\cdots \\
0,0, * \cdots
\end{array}\right.
$$

1 as 1-st component, eg:

$$
\left\{\begin{array}{l}
1, *, 1 \cdots \\
1,1, * \cdots \\
\cdots \\
1,0, * \cdots
\end{array}\right.
$$

no restriction as 1-st component, eg:

$$
\left\{\begin{array}{l}
*, *, 1 \cdots \\
*, 1, * \cdots \\
\cdots \\
*, 0, * \cdots
\end{array}\right.
$$

If we turn the 1 at 1 -st component into 0 , we will find that all possibilities are reduced.
Similarly, if we turn 1 into 0 at any component, we will find that all possibilities are reduced.
Therefore, if we turn 1 into 0 at all components, all possibilities will be reduced to a special case where only $d+1$ zeros cannot be obtained. So the possibilities of being able to obtain is more than that of the special case.

In this special case, the number of 0 can be $0,1, \cdots$, d. So we have $N^{\Phi}(n) \leq \sum_{k=0}^{d}\binom{n}{k}$

$$
\begin{equation*}
\sum_{k=0}^{d}\binom{n}{k} \leq\left(\frac{e n}{d}\right)^{d} \tag{5.11}
\end{equation*}
$$

Apply Chernoff bound and assume $d<\frac{n}{2}$

5.3 Step 3: VC Dimension

Definition 5.1 (VC Dimension) The VC Dim of a set Φ of indicator function is the maximum n, so that $N^{\Phi}(n)=2^{n}$

Then, for any indicator function set Φ, if $V C D(\Phi)=d<\infty$ then

$$
N^{\Phi}(n)\left\{\begin{array}{cr}
=2^{n}, & n \leq d \tag{5.12}\\
\leq \sum_{k=0}^{d}\binom{n}{k} \leq\left(\frac{e n}{d}\right)^{d}, & n>d
\end{array}\right.
$$

5.4 Step 1,2,3

$$
\begin{align*}
P\left(\exists f \in \mathcal{F}: P_{D}(Y \neq f(x))-\frac{1}{n}\right. & \left.\sum I\left[Y_{i} \neq f\left(x_{i}\right)\right] \geq \epsilon\right) \\
\leq & N^{\Phi}(2 n) \cdot c_{1} e^{-c_{2} n \epsilon^{2}} \tag{5.13}\\
\leq & \left(\frac{2 e n}{d}\right)^{d} c_{1} \cdot e^{-c_{2} n \epsilon^{2}}
\end{align*}
$$

Theorem 5.2 Let $\delta=\left(\frac{2 e n}{d}\right)^{d} * 4 e^{-\frac{1}{2} n e^{2}}$ then we have with prob. at $1-\delta$ (over the random draw of the training dataset S).

$$
\begin{equation*}
P_{D}(Y \neq f(X)) \leq P_{S}[Y \neq f(X)]+O\left(\sqrt{\frac{d \ln n+\ln \frac{1}{\delta}}{n}}\right) \tag{5.14}
\end{equation*}
$$

holds true for all $f \in \mathcal{F}$ simultanously, where d is the $V C$ dimension of the hypothesis space \mathcal{F}, where $P_{S}[Y \neq f(X)]:=\frac{1}{n} \sum I\left[Y_{i} \neq f\left(x_{i}\right)\right]$.

Linear classifiers in \mathcal{R}^{d}

$$
\begin{equation*}
\mathcal{F}:=\left\{\operatorname{sgn}\left(w^{T} x+b\right), w \in \mathcal{R}^{d}, b \in \mathcal{R}\right\} \tag{5.15}
\end{equation*}
$$

then,

$$
\begin{equation*}
V C D(\mathcal{F})=d+1 \tag{5.16}
\end{equation*}
$$

Proof: Let $x_{1}=(1,0, \ldots, 0), x_{2}=(0,1, \ldots, 0), x_{d}=(0,0, \ldots, 1), x_{d+1}=(0,0, \ldots, 0) \in \mathcal{R}^{d}$. They can represent any set in which d points are independent, cause $\left(x_{1}, \ldots, x_{d}\right)$ is a set of base in \mathcal{R}^{d}. Or we can discuss this Linear classification problem in \mathcal{R}^{d-1}. Then we have:

$$
\begin{align*}
N^{\mathcal{F}}\left(x_{1}, \ldots, x_{d+1}\right) & =\mid\left\{\left(f\left(x_{1}\right), \ldots, f\left(x_{d+1}\right) \mid f \in \mathcal{F}\right\} \mid\right. \\
& =\left|\left\{\left(\operatorname{sgn}\left(w_{1}+b\right), \ldots, \operatorname{sgn}\left(w_{d}+b\right), \operatorname{sgn}(b)\right) \mid w \in \mathcal{R}^{d}, b \in \mathcal{R}\right\}\right| \tag{5.17}\\
& =2^{d+1}
\end{align*}
$$

Thus $\operatorname{VCD}(\mathcal{F}) \geq d+1$. Next we need to prove $\operatorname{VCD}(\mathcal{F})<d+2$:
$\forall x_{1}, \ldots, x_{d+2} \in \mathcal{R}^{d},\left(x_{1}, 1\right), \ldots,\left(x_{d+2},-1\right), \exists c_{1}, \ldots, c_{d+1}$, s.t.

$$
\begin{equation*}
w^{T} x_{d+2}+b=\sum_{i=1}^{d+1} c_{i}\left(w^{T} x_{i}+b\right), \forall w \in \mathcal{R}^{d} \tag{5.18}
\end{equation*}
$$

Assuming that $\left(\operatorname{sgn}\left(c_{1}\right), \ldots, \operatorname{sgn}\left(c_{d+1}\right),-1\right) \in\left\{\left(f\left(x_{1}\right), \ldots, f\left(x_{d+2}\right) \mid f \in \mathcal{F}\right\}\right.$. Then $\exists f \in \mathcal{F}$, that is $\exists w \in \mathcal{R}^{d}, b \in$ \mathcal{R}, s.t. $\operatorname{sgn}\left(c_{i}\right)=\operatorname{sgn}\left(w^{T} x_{i}+b\right)$ and $\operatorname{sgn}\left(w^{T} x_{i}+b\right)=-1$, which is contradict to 5.18 .

Thus $\left(\operatorname{sgn}\left(c_{1}\right), \ldots, \operatorname{sgn}\left(c_{d+1}\right),-1\right) \notin\left\{\left(f\left(x_{1}\right), \ldots, f\left(x_{d+2}\right) \mid f \in \mathcal{F}\right\}, \forall f \in \mathcal{F}\right.$, so $\operatorname{VCD}(\mathcal{F})<d+2$. So we have proved $V C D(\mathcal{F})=d+1$

References

[AGM97] N. Alon, Z. Galil and O. Margalit, On the Exponent of the All Pairs Shortest Path Problem, Journal of Computer and System Sciences 54 (1997), pp. 255-262.
[F76] M. L. Fredman, New Bounds on the Complexity of the Shortest Path Problem, SIAM Journal on Computing 5 (1976), pp. 83-89.

