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5.1 Review

As for the case where |F| = ∞ , note that we have:
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We define:

NF (x1, y1, · · ·, xn, yn) := |{(f(x1), f(x2), · · ·, f(xn)) : f ∈ F}|, f(xi) ∈ {0, 1} (5.2)

NΦ(δ1, · · · , δn) := |{(ϕf (δ1), · · · , ϕ(δn)) : ϕf ∈ Φ}|, where δi = (xi, yi), ϕf (δi) = I[f(xi) ̸= yi] (5.3)

NF (n) := max
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NF (x1, y1, . . . , xn, yn) (5.4)

NΦ(n) = max
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NΦ(δ1, . . . , δn) (5.5)

where Φ is a set of indicator functions. (Note that these two sets are same in size)
From the last lecture we have known that When n grows past some threshold (say d), the expressiveness of
Φ will fall short. So we speculate that
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We have to proof the following inequality:
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5.2 Proof for Inequality(5.8)

Let’s consider the special case first— From our assumption, we know that when d+1, there is a case of

(ϕ(x1), ϕ(x2), ..., ϕ(xn)) (5.9)

that cannot be obtained. In this special case, we assume that we cannot obtain d+1-zero cases. Which
means that we can only have at most d zeros in this equation.
There are totally

d∑
k=0

(
n

k

)
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possible value assignments that have less than d+1 zeros.
Special cases are limited, so consider turning general cases into special cases. We will give the complete
proof next.

Proof: First, we list all the situations that cannot be obtained and consider what happen at 1-st component.
There are three possibility,

0 as 1-st component,eg: 
0, ∗, 1 · · · nbits
0, 1, ∗ · · ·
· · ·
0, 0, ∗ · · ·

1 as 1-st component, eg: 
1, ∗, 1 · · ·
1, 1, ∗ · · ·
· · ·
1, 0, ∗ · · ·

no restriction as 1-st component, eg: 
∗, ∗, 1 · · ·
∗, 1, ∗ · · ·
· · ·
∗, 0, ∗ · · ·

If we turn the 1 at 1-st component into 0, we will find that all possibilities are reduced.

Similarly, if we turn 1 into 0 at any component, we will find that all possibilities are reduced.

Therefore, if we turn 1 into 0 at all components, all possibilities will be reduced to a special case where only
d+ 1 zeros cannot be obtained. So the possibilities of being able to obtain is more than that of the special
case.

In this special case, the number of 0 can be 0, 1, · · · , d. So we have NΦ(n) ≤
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Apply Chernoff bound and assume d < n
2
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5.3 Step 3: VC Dimension

Definition 5.1 (VC Dimension) The VC Dim of a set Φ of indicator function is the maximum n, so that
NΦ(n) = 2n

Then, for any indicator function set Φ,if V CD(Φ) = d < ∞ then
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5.4 Step 1,2,3
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Theorem 5.2 Let δ = ( 2end )d∗4e− 1
2ne

2

then we have with prob. at 1−δ(over the random draw of the training
dataset S).
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holds true for all f ∈ F simultanously, where d is the VC dimension of the hypothesis space F , where
PS [Y ̸= f(X)] := 1

n

∑
I[Yi ̸= f(xi)].

Linear classifiers in Rd

F := {sgn(wTx+ b), w ∈ Rd, b ∈ R} (5.15)

then,
V CD(F) = d+ 1 (5.16)

Proof: Let x1 = (1, 0, ..., 0), x2 = (0, 1, ..., 0), xd = (0, 0, ..., 1), xd+1 = (0, 0, ..., 0) ∈ Rd. They can represent
any set in which d points are independent, cause (x1, ..., xd) is a set of base in Rd. Or we can discuss this
Linear classification problem in Rd−1. Then we have:

NF (x1, ..., xd+1) = |{(f(x1), ..., f(xd+1)|f ∈ F}|
= |{(sgn(w1 + b), ..., sgn(wd + b), sgn(b))|w ∈ Rd, b ∈ R}|
= 2d+1

(5.17)

Thus V CD(F) ≥ d+ 1. Next we need to prove V CD(F) < d+ 2:
∀x1, ..., xd+2 ∈ Rd, (x1, 1), ..., (xd+2,−1),∃c1, ..., cd+1, s.t.

wTxd+2 + b =

d+1∑
i=1

ci(w
Txi + b),∀w ∈ Rd (5.18)

Assuming that (sgn(c1), ..., sgn(cd+1),−1) ∈ {(f(x1), ..., f(xd+2)|f ∈ F}. Then ∃f ∈ F , that is ∃w ∈ Rd, b ∈
R, s.t. sgn(ci) = sgn(wTxi + b) and sgn(wTxi + b) = −1, which is contradict to 5.18.
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Thus (sgn(c1), ..., sgn(cd+1),−1) /∈ {(f(x1), ..., f(xd+2)|f ∈ F},∀f ∈ F , so V CD(F) < d + 2. So we have
proved V CD(F) = d+ 1
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