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4.1 Recall

A more common way to use the concentration inequality is that:

let § = 2¢72" as P(|L 27 2 — p| > €) < 2e72"¢" | we can declare that
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with probability at least 1 — §.

4.2 Finite Hypothesis Space

Suppose f € F is learned from training data (z1,91), ..., (Zn, yn), |F| < 0.

Define the training error as:

Define the test error as:

E{I[Y # J(X)]} = Pr(Y # f(X))

We hope to conduct a Worst-Case Analysis to find an upper bound on the difference between the two
errors, no matter how the model f has been learned. So we have:
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A 1

Pr[Pr(Y # f(X)) - — i:ZlI[YZ # f(X)] > € <

1 n
Pr[d F,Pr(Y X)) —— 1Y; X)) > € <

Bf € F.Pr(Y # f(X)) n;[ # f(Xi)] > < W

S PPHY # f(X)) — - SO ITY # f(X0)] 2 ] <
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From this, we can draw an intuitive conclusion that the size of hypothesis space affects the upper
bound of over-fitting probability.

4.3 Infinite Hypothesis Space

As for the case where |F| = oo, note that we still have:

Pr(Pr(Y # f(X)) = = 3 IIVi # f(X)] = <

Pr[3f € F,Pr(Y # f(X)) - — me # f(X,)] > €

4.3.1 Step I: Double Sample Trick

1
Lemma 4.1 Consider 2n iid random variables X1, ..., Xy, Xn41, -y Xop with EX; = p. Letvy = — 2?21 X, vp =
n

In2

]. 2n I
- Zi:n_H X;. Forn > = we have:

1 1
5Pr(|1/1 —p| >2€) <Pr(lvyy —wa| >€) <2Pr(jvy —p| > 56)

Proof: For the second part, note that

€ €
Pr(fi — ] 2 €) < Pr(lr = pl 2 SV |2 —p 2 )

For the first part, if |11 — p| > 2¢, |va — p| < €, we will always have |v; — 15| > e. Therefore,

Pr(jv1 — ve| > €) > Pr(|lvy — p| > 2¢) Pr(|va — p| <€)

]
Therefore, according to this lemma, we have:
1 n
Pr(3f € F.Pr(Y # f(X)) = — > IIYi # f(X;)] > €] <
i=1
o (4.3)

2PAEf € F, o YOIV £ F(X)] - D0 TV # f(X)] 2

i=1 i=n+1

}



Lecture 4: VC Theory 4-3

4.3.2 Step 1I: Sample and Permute

When drawing (z;,y;), we can follow these two steps: first draw an unordered set z1, ..., 29, (2 = (x4, 4:))
and second generate a random permutation o € Ss,, as the order. With this method, we have:

2n

2PiEf e F LS I A fOv0) - L S0 £ s = ) -

i=1 i=n+1 (44)

2n

Bl Pr B € F S I £ S = 2 S 1 # 1) = S

=1 i=n+1

With the union bound, we have

Pr 3f e F,— ZI Yoy # f(Xo@)] — = Z IY ) # f( a())]Zg]
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where N (21, 29, -+ , z2,) denotes the number of distinguishable classifiers on z1, 2o, - - - , 2.

Now, with the draw without replacement Chernoff bound, we have

2n

P ZI v # o) == S IMVoty # F(Xo)] 2 5]
i=n+1
2n

P ZI vy # S o) = 5 S 1oty # f (X)) 2 4] (4.6)

i=1

< 67271(1)2

ne?
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Therefore,
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2Prf3f € F, o >V # X0 - LS A ) 2 )
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zl 1=n—+1

n 2n
1 1 €
< 2By ) AN (21,22, , 220) 'aesg ﬁ E o) 7 f(Xo@@))] — - E 1Y,y # f(Xo@)] = 5]}

i=1 t1=n-+1
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Denote N¥(n) := max(,, 5. 2,) N (21,22, , 2n). Obviously E(,, ., {NT (21,22, -+ ,220)} < N¥(2n).
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Note that N¥'(n) is monotonically non-decreasing with respect to n, and N¥'(n) < 27. Intuitively, with
small values of n, the functions within F' will be able to do arbitrary classification on some n data points
(24,25, ,2). When n grows past some threshold (say d), the expressiveness of F' will fall short. So we
speculate that

=2" n<d

4.8
<2", n>d (48)

3d € N, N¥(n) {

Our next step is to figure out the asymptotic characteristics of N¥'(n).
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