Machine Learning Fall 2023

Lecture 4: VC Theory

Lecturer: Liwei Wang

Scribe: Shihui Li, Zhu Xu, Juling Fan, Huixuan Zhang, Kelin Fu, Weiyuan Ding, Xiangyang Li, Xingyu Xiang

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications. They may be distributed outside this class only with the permission of the Instructor.

4.1 Recall

A more common way to use the **concentration inequality** is that:

let $\delta=2e^{-2n\epsilon^2}$, as $P(|\frac{1}{n}\sum_{i=1}^n x_i-p|\geq\epsilon)\leq 2e^{-2n\epsilon^2}$, we can declare that

$$\left|\frac{1}{n}\sum_{i=1}^{n}x_{i}-p\right| \leq \sqrt{\frac{\ln\frac{2}{\delta}}{2n}} = O(\sqrt{\ln\frac{1}{\delta}n})$$

with probability at least $1 - \delta$.

4.2 Finite Hypothesis Space

Suppose $\hat{f} \in \mathcal{F}$ is learned from training data $(x_1, y_1), \dots, (x_n, y_n), |\mathcal{F}| < \infty$.

Define the training error as:

$$\frac{1}{n}\sum_{i=1}^{n}I[y_i\neq\hat{f}(x_i)]$$

Define the test error as:

$$E\{I[Y \neq \hat{f}(X)]\} = \Pr(Y \neq \hat{f}(X))$$

We hope to conduct a Worst-Case Analysis to find an upper bound on the difference between the two errors, no matter how the model \hat{f} has been learned. So we have:

4-2 Lecture 4: VC Theory

$$\Pr[\Pr_{D}(Y \neq \hat{f}(X)) - \frac{1}{n} \sum_{i=1}^{n} I[Y_{i} \neq \hat{f}(X_{i})] \geq \epsilon] \leq$$

$$\Pr[\exists f \in \mathcal{F}, \Pr_{D}(Y \neq f(X)) - \frac{1}{n} \sum_{i=1}^{n} I[Y_{i} \neq f(X_{i})] \geq \epsilon] \leq$$

$$\sum_{f \in \mathcal{F}} \Pr[\Pr_{D}(Y \neq f(X)) - \frac{1}{n} \sum_{i=1}^{n} I[Y_{i} \neq f(X_{i})] \geq \epsilon] \leq$$

$$|\mathcal{F}|e^{-2n\epsilon^{2}}$$

$$(4.1)$$

From this, we can draw an intuitive conclusion that the size of hypothesis space affects the upper bound of over-fitting probability.

4.3 Infinite Hypothesis Space

As for the case where $|\mathcal{F}| = \infty$, note that we still have:

$$\Pr[\Pr_{D}(Y \neq \hat{f}(X)) - \frac{1}{n} \sum_{i=1}^{n} I[Y_i \neq \hat{f}(X_i)] \ge \epsilon] \le$$

$$\Pr[\exists f \in \mathcal{F}, \Pr_{D}(Y \neq f(X)) - \frac{1}{n} \sum_{i=1}^{n} I[Y_i \neq f(X_i)] \ge \epsilon]$$

$$(4.2)$$

4.3.1 Step I: Double Sample Trick

Lemma 4.1 Consider 2n iid random variables $X_1, ..., X_n, X_{n+1}, ..., X_{2n}$ with $EX_i = p$. Let $\nu_1 = \frac{1}{n} \sum_{i=1}^n X_i, \nu_2 = \frac{1}{n} \sum_{i=n+1}^{2n} X_i$. For $n \ge \frac{\ln 2}{\epsilon^2}$, we have:

$$\frac{1}{2}\Pr(|\nu_1 - p| \ge 2\epsilon) \le \Pr(|\nu_1 - \nu_2| \ge \epsilon) \le 2\Pr(|\nu_1 - p| \ge \frac{1}{2}\epsilon)$$

Proof: For the second part, note that

$$\Pr(|\nu_1 - \nu_2| \ge \epsilon) \le \Pr(|\nu_1 - p| \ge \frac{\epsilon}{2} \lor |\nu_2 - p| \ge \frac{\epsilon}{2})$$

For the first part, if $|\nu_1 - p| \ge 2\epsilon$, $|\nu_2 - p| \le \epsilon$, we will always have $|\nu_1 - \nu_2| \ge \epsilon$. Therefore,

$$\Pr(|\nu_1 - \nu_2| \ge \epsilon) \ge \Pr(|\nu_1 - p| \ge 2\epsilon) \Pr(|\nu_2 - p| \le \epsilon)$$

Therefore, according to this lemma, we have:

$$\Pr[\exists f \in \mathcal{F}, \Pr_{D}(Y \neq f(X)) - \frac{1}{n} \sum_{i=1}^{n} I[Y_i \neq f(X_i)] \ge \epsilon] \le$$

$$2\Pr[\exists f \in \mathcal{F}, \frac{1}{n} \sum_{i=1}^{n} I[Y_i \neq f(X_i)] - \frac{1}{n} \sum_{i=n+1}^{2n} I[Y_i \neq f(X_i)] \ge \frac{\epsilon}{2}]$$

$$(4.3)$$

Lecture 4: VC Theory 4-3

4.3.2 Step II: Sample and Permute

When drawing (x_i, y_i) , we can follow these two steps: first draw an unordered set $z_1, ..., z_{2n}(z_i = (x_i, y_i))$ and second generate a random permutation $\sigma \in S_{2n}$ as the order. With this method, we have:

$$2\Pr[\exists f \in \mathcal{F}, \frac{1}{n} \sum_{i=1}^{n} I[Y_i \neq f(X_i)] - \frac{1}{n} \sum_{i=n+1}^{2n} I[Y_i \neq f(X_i)] \geq \frac{\epsilon}{2}] =$$

$$2\mathbb{E}_{(z_1, \dots, z_{2n})} \{ \Pr_{\sigma \in S_{2n}} [\exists f \in \mathcal{F}, \frac{1}{n} \sum_{i=1}^{n} I[Y_{\sigma(i)} \neq f(X_{\sigma(i)})] - \frac{1}{n} \sum_{i=n+1}^{2n} I[Y_{\sigma(i)} \neq f(X_{\sigma(i)})] \geq \frac{\epsilon}{2}] \}$$

$$(4.4)$$

With the union bound, we have

$$\Pr_{\sigma \in S_{2n}} [\exists f \in \mathcal{F}, \frac{1}{n} \sum_{i=1}^{n} I[Y_{\sigma(i)} \neq f(X_{\sigma(i)})] - \frac{1}{n} \sum_{i=n+1}^{2n} I[Y_{\sigma(i)} \neq f(X_{\sigma(i)})] \ge \frac{\epsilon}{2}]
\le N^{F}(z_{1}, z_{2}, \dots, z_{2n}) \cdot \Pr_{\sigma \in S_{2n}} [\frac{1}{n} \sum_{i=1}^{n} I[Y_{\sigma(i)} \neq f(X_{\sigma(i)})] - \frac{1}{n} \sum_{i=n+1}^{2n} I[Y_{\sigma(i)} \neq f(X_{\sigma(i)})] \ge \frac{\epsilon}{2}]$$
(4.5)

where $N^F(z_1, z_2, \dots, z_{2n})$ denotes the number of distinguishable classifiers on z_1, z_2, \dots, z_{2n} .

Now, with the draw without replacement Chernoff bound, we have

$$\Pr_{\sigma \in S_{2n}} \left[\frac{1}{n} \sum_{i=1}^{n} I[Y_{\sigma(i)} \neq f(X_{\sigma(i)})] - \frac{1}{n} \sum_{i=n+1}^{2n} I[Y_{\sigma(i)} \neq f(X_{\sigma(i)})] \ge \frac{\epsilon}{2} \right] \\
= \Pr_{\sigma \in S_{2n}} \left[\frac{1}{n} \sum_{i=1}^{n} I[Y_{\sigma(i)} \neq f(X_{\sigma(i)})] - \frac{1}{2n} \sum_{i=1}^{2n} I[Y_{\sigma(i)} \neq f(X_{\sigma(i)})] \ge \frac{\epsilon}{4} \right] \\
\le e^{-2n(\frac{\epsilon}{4})^2} \\
= e^{-\frac{n\epsilon^2}{8}} \tag{4.6}$$

Therefore,

$$2\Pr[\exists f \in \mathcal{F}, \frac{1}{n} \sum_{i=1}^{n} I[Y_{i} \neq f(X_{i})] - \frac{1}{n} \sum_{i=n+1}^{2n} I[Y_{i} \neq f(X_{i})] \geq \frac{\epsilon}{2}]$$

$$= 2\mathbb{E}_{(z_{1},...,z_{2n})} \left\{ \Pr_{\sigma \in S_{2n}} [\exists f \in \mathcal{F}, \frac{1}{n} \sum_{i=1}^{n} I[Y_{\sigma(i)} \neq f(X_{\sigma(i)})] - \frac{1}{n} \sum_{i=n+1}^{2n} I[Y_{\sigma(i)} \neq f(X_{\sigma(i)})] \geq \frac{\epsilon}{2}] \right\}$$

$$\leq 2\mathbb{E}_{(z_{1},...,z_{2n})} \left\{ N^{F}(z_{1}, z_{2}, \cdots, z_{2n}) \cdot \Pr_{\sigma \in S_{2n}} [\frac{1}{n} \sum_{i=1}^{n} I[Y_{\sigma(i)} \neq f(X_{\sigma(i)})] - \frac{1}{n} \sum_{i=n+1}^{2n} I[Y_{\sigma(i)} \neq f(X_{\sigma(i)})] \geq \frac{\epsilon}{2}] \right\}$$

$$\leq 2\mathbb{E}_{(z_{1},...,z_{2n})} \left\{ N^{F}(z_{1}, z_{2}, \cdots, z_{2n}) \cdot e^{-\frac{n\epsilon^{2}}{8}} \right\}$$

$$\leq 2\mathbb{E}_{(z_{1},...,z_{2n})} \left\{ N^{F}(z_{1}, z_{2}, \cdots, z_{2n}) \cdot e^{-\frac{n\epsilon^{2}}{8}} \right\}$$

$$\leq 2\mathbb{E}_{(z_{1},...,z_{2n})} \left\{ N^{F}(z_{1}, z_{2}, \cdots, z_{2n}) \cdot e^{-\frac{n\epsilon^{2}}{8}} \right\}$$

$$\leq 2\mathbb{E}_{(z_{1},...,z_{2n})} \left\{ N^{F}(z_{1}, z_{2}, \cdots, z_{2n}) \cdot e^{-\frac{n\epsilon^{2}}{8}} \right\}$$

$$\leq 2\mathbb{E}_{(z_{1},...,z_{2n})} \left\{ N^{F}(z_{1}, z_{2}, \cdots, z_{2n}) \cdot e^{-\frac{n\epsilon^{2}}{8}} \right\}$$

$$\leq 2\mathbb{E}_{(z_{1},....,z_{2n})} \left\{ N^{F}(z_{1}, z_{2}, \cdots, z_{2n}) \cdot e^{-\frac{n\epsilon^{2}}{8}} \right\}$$

$$\leq 2\mathbb{E}_{(z_{1},...,z_{2n})} \left\{ N^{F}(z_{1}, z_{2}, \cdots, z_{2n}) \cdot e^{-\frac{n\epsilon^{2}}{8}} \right\}$$

$$\leq 2\mathbb{E}_{(z_{1},...,z_{2n})} \left\{ N^{F}(z_{1}, z_{2}, \cdots, z_{2n}) \cdot e^{-\frac{n\epsilon^{2}}{8}} \right\}$$

$$\leq 2\mathbb{E}_{(z_{1},...,z_{2n})} \left\{ N^{F}(z_{1}, z_{2}, \cdots, z_{2n}) \cdot e^{-\frac{n\epsilon^{2}}{8}} \right\}$$

$$\leq 2\mathbb{E}_{(z_{1},...,z_{2n})} \left\{ N^{F}(z_{1}, z_{2}, \cdots, z_{2n}) \cdot e^{-\frac{n\epsilon^{2}}{8}} \right\}$$

Denote $N^F(n) := \max_{(z_1, z_2, \cdots, z_n)} N^F(z_1, z_2, \cdots, z_n)$. Obviously $\mathbb{E}_{(z_1, \dots, z_{2n})} \{ N^F(z_1, z_2, \cdots, z_{2n}) \} \le N^F(2n)$.

Note that $N^F(n)$ is monotonically non-decreasing with respect to n, and $N^F(n) \leq 2^n$. Intuitively, with small values of n, the functions within F will be able to do arbitrary classification on some n data points $(z'_1, z'_2, \cdots, z'_n)$. When n grows past some threshold (say d), the expressiveness of F will fall short. So we speculate that

$$\exists d \in \mathbb{N}, N^F(n) \begin{cases} = 2^n, & n \le d \\ < 2^n, & n > d \end{cases}$$

$$(4.8)$$

Our next step is to figure out the asymptotic characteristics of $N^F(n)$.

References

- [AGM97] N. Alon, Z. Galil and O. Margalit, On the Exponent of the All Pairs Shortest Path Problem, *Journal of Computer and System Sciences* **54** (1997), pp. 255–262.
 - [F76] M. L. Fredman, New Bounds on the Complexity of the Shortest Path Problem, SIAM Journal on Computing 5 (1976), pp. 83-89.