Machine Learning Lecture 3: Concentration Inequality and Introduction to VC Theory

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications. They may be distributed outside this class only with the permission of the Instructor.

Concentration Inequality 3.1

3.1.1**Chernoff Bound**

Lecturer: Liwei Wang

1. Let X_1, X_2, \ldots, X_n be i.i.d. Bernoulli random variables, EX = p. Then,

$$\Pr\left[\frac{1}{n}\sum_{i=1}^{n}X_{i}-p\geq\varepsilon\right]\leq\mathrm{e}^{-nD_{B}(p+\varepsilon\|p)}.$$

Proof: Apply Chernoff's inequality and use $\operatorname{Ee}^{t \sum X_i} = (\operatorname{Ee}^{tX})^n = (pe^t + 1 - p)^n$.

2. Let X_1, X_2, \ldots, X_n be i.i.d. random variables in [0, 1], $\mathbf{E}X = p$. Then,

$$\Pr\left[\frac{1}{n}\sum_{i=1}^{n}X_{i}-p\geq\varepsilon\right]\leq\mathrm{e}^{-nD_{B}(p+\varepsilon\|p)}.$$

Proof: By Jensen's inequality, $\operatorname{Ee}^{t \sum X_i} = (\operatorname{Ee}^{tX})^n \leq (pe^t + 1 - p)^n$.

3. Let X_1, X_2, \ldots, X_n be independent random variables in [0, 1], $EX_i = p_i$. Let $p = \frac{1}{n} \sum_{i=1}^n p_i$. Then

$$\Pr\left[\frac{1}{n}\sum_{i=1}^{n}X_{i}-p\geq\varepsilon\right]\leq\mathrm{e}^{-nD_{B}(p+\varepsilon\|p)}.$$

Proof: By the AM-GM inequality,

$$\operatorname{Ee}^{t \sum X_i} = \prod_{i=1}^n \operatorname{Ee}^{tX_i} \le \prod_{i=1}^n (p_i e^t + 1 - p_i) \le (p e^t + 1 - p)^n.$$

3.1.2Additive Chernoff Bound

Since $D_B(p + \varepsilon \parallel p) \ge 2\varepsilon^2$ (left as homework), we also have

$$\Pr\left[\frac{1}{n}\sum_{i=1}^{n}X_{i}-p\geq\varepsilon\right]\leq\mathrm{e}^{-2n\varepsilon^{2}}$$

in all cases.

Fall 2023

Scribe: Jiangyan Ma

3.1.3 Hoeffding Inequality

Let X_1, X_2, \ldots, X_n be independent random variables, $X_i \in [a_i, b_i], \mu \coloneqq E_n^{\perp} \sum X_i$. Then

$$\Pr\left[\frac{1}{n}\sum_{i=1}^{n}X_{i}-\mu\geq\varepsilon\right]\leq\mathrm{e}^{-\frac{2n\varepsilon^{2}}{\Sigma(b_{i}-a_{i})^{2}}}.$$

3.1.4 Draw without Replacement

Assume we have N numbers $a_1, a_2, \ldots, a_N \in \{0, 1\}$. Randomly draw n numbers from a_1, \ldots, a_N .

- 1. If we draw with replacement, it is the same as the first case in Section 3.1.1.
- 2. If we draw without replacement, let X_1, \ldots, X_n be the random variables obtained from draw with replacement, Y_1, \ldots, Y_n be the random variables obtained from draw without replacement. We would like to prove $\frac{1}{n} \sum Y_i$ concentrates faster than $\frac{1}{n} \sum X_i$. In other words, we wish to prove

$$\operatorname{Ee}^{t(Y_1 + \dots + Y_n)} < \operatorname{Ee}^{t(X_1 + \dots + X_n)}.$$
(3.1)

Expanding both sides gives us

$$Ee^{t(Y_1 + \dots + Y_n)} = 1 + tE \sum_i Y_i + \frac{t^2}{2} E \sum_{i,j} Y_i Y_j + \dots,$$
$$Ee^{t(X_1 + \dots + X_n)} = 1 + tE \sum_i X_i + \frac{t^2}{2} E \sum_{i,j} X_i X_j + \dots.$$

Apparently $E \sum_i Y_i = E \sum_i X_i$, $EY_i Y_j = \Pr[Y_i = 1, Y_j = 1] \le \Pr[X_i = 1, X_j = 1] = EX_i X_j$, etc. Thus Equation (3.1) holds.

3.1.5 McDiarmid Lemma

Assume $f(x_1, \ldots, x_n)$ is a stable function, that is, for $\forall x_1, \ldots, x_n, \forall i, \forall x'_i$, we have

$$|f(x_1,\ldots,x_i,\ldots,x_n) - f(x_1,\ldots,x'_i,\ldots,x_n)| \le c_i.$$

Then for independent random variables X_1, \ldots, X_n ,

$$\Pr\left[f(X_1,\ldots,X_n) - \operatorname{E} f(X_1,\ldots,X_n) \ge \varepsilon\right] \le e^{-\frac{\varepsilon^2}{\sum c_i^2}}.$$

3.2 VC Theory: The First Theory of Generalization

3.2.1 Universal Approximation Theorem

Recall: Generalization, performance difference between training and test data. (over-fitting)

Representation power of Deep Neural network: Given any continuous target function f(x), $x \in \mathbb{R}^d$. For any $\varepsilon > 0$, there exists a neural network $NN(\cdot)$, such that $||f(x) - NN(x)|| \le \varepsilon$. This is called the Universal Approximation Theorem.

3.2.2 An Oversimplified Setting

Suppose f is the learned classifier from training data $(x_1, y_1), \ldots, (x_n, y_n)$. The training error can be formulated as

$$\frac{1}{n}\sum_{i=1}^{n}\mathbf{I}[y_i \neq f(x_i)]$$

while the test error can be formulated as

$$\Pr[Y \neq f(X)] = \operatorname{E}\left(\operatorname{I}[Y \neq f(X)]\right)$$

The training error is the average of n Bernoulli random variables, while the test error is its expectation. By the concentration property, we expect the training error to converge to the test error as n increases. Then why would there be over-fitting? The reason is that f is learned from $(x_1, y_1), \ldots, (x_n, y_n)$, leading to $f(x_1), \ldots, f(x_n)$ being non-independent.

Let's consider a setting where we collect training data $(x_i, y_i)^n$ and learn $f \in \mathcal{F}$ to fit the training data. We call \mathcal{F} the hypothesis space (A set of classifier, or a model). We assume $|\mathcal{F}| < \infty$. Under this oversimplified assumption, we can estimate the error using the union bound:

$$\Pr\left[\frac{1}{n}\sum_{i=1}^{n}\mathrm{I}[y_{i}\neq f(x_{i})]-\Pr[Y\neq f(X)]\geq\varepsilon\right]\leq|\mathcal{F}|\mathrm{e}^{-2n\varepsilon^{2}}.$$

Larger hypothesis space implies larger upper bound and thus larger probability of over-fitting. However, we know in realistic settings the hypothesis space is infinitely large. But from this we learnt that the size of \mathcal{F} Highly determines the gap between two sets. The purpose of VC theory is to study the generalization error when $|\mathcal{F}| = \infty$.