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Lecture 3: Concentration Inequality and Introduction to VC Theory
Lecturer: Liwei Wang Scribe: Jiangyan Ma

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.
They may be distributed outside this class only with the permission of the Instructor.

3.1 Concentration Inequality

3.1.1 Chernoff Bound

1. Let X1, X2, . . . , Xn be i.i.d. Bernoulli random variables, EX = p. Then,

Pr

[
1

n

n∑
i=1

Xi − p ≥ ε

]
≤ e−nDB(p+ε∥p).

Proof: Apply Chernoff’s inequality and use Eet
∑

Xi = (EetX)n = (pet + 1− p)n.

2. Let X1, X2, . . . , Xn be i.i.d. random variables in [0, 1], EX = p. Then,

Pr

[
1

n

n∑
i=1

Xi − p ≥ ε

]
≤ e−nDB(p+ε∥p).

Proof: By Jensen’s inequality, Eet
∑

Xi = (EetX)n ≤ (pet + 1− p)n.

3. Let X1, X2, . . . , Xn be independent random variables in [0, 1], EXi = pi. Let p = 1
n

∑n
i=1 pi. Then

Pr

[
1

n

n∑
i=1

Xi − p ≥ ε

]
≤ e−nDB(p+ε∥p).

Proof: By the AM-GM inequality,

Eet
∑

Xi =

n∏
i=1

EetXi ≤
n∏

i=1

(pie
t + 1− pi) ≤ (pet + 1− p)n.

3.1.2 Additive Chernoff Bound

Since DB(p+ ε ∥ p) ≥ 2ε2 (left as homework), we also have

Pr

[
1

n

n∑
i=1

Xi − p ≥ ε

]
≤ e−2nε2

in all cases.
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3.1.3 Hoeffding Inequality

Let X1, X2, . . . , Xn be independent random variables, Xi ∈ [ai, bi], µ := E 1
n

∑
Xi. Then

Pr

[
1

n

n∑
i=1

Xi − µ ≥ ε

]
≤ e

− 2nε2∑
(bi−ai)

2 .

3.1.4 Draw without Replacement

Assume we have N numbers a1, a2, . . . , aN ∈ {0, 1}. Randomly draw n numbers from a1, . . . , aN .

1. If we draw with replacement, it is the same as the first case in Section 3.1.1.

2. If we draw without replacement, let X1, . . . , Xn be the random variables obtained from draw with
replacement, Y1, . . . , Yn be the random variables obtained from draw without replacement. We would
like to prove 1

n

∑
Yi concentrates faster than

1
n

∑
Xi. In other words, we wish to prove

Eet(Y1+···+Yn) ≤ Eet(X1+···+Xn). (3.1)

Expanding both sides gives us

Eet(Y1+···+Yn) = 1 + tE
∑
i

Yi +
t2

2
E
∑
i,j

YiYj + . . . ,

Eet(X1+···+Xn) = 1 + tE
∑
i

Xi +
t2

2
E
∑
i,j

XiXj + . . . .

Apparently E
∑

i Yi = E
∑

i Xi, EYiYj = Pr[Yi = 1, Yj = 1] ≤ Pr[Xi = 1, Xj = 1] = EXiXj , etc. Thus
Equation (3.1) holds.

3.1.5 McDiarmid Lemma

Assume f(x1, . . . , xn) is a stable function, that is, for ∀x1, . . . , xn, ∀i, ∀x′
i, we have

|f(x1, . . . , xi, . . . , xn)− f(x1, . . . , x
′
i, . . . , xn)| ≤ ci.

Then for independent random variables X1, . . . , Xn,

Pr [f(X1, . . . , Xn)− Ef(X1, . . . , Xn) ≥ ε] ≤ e
− ε2∑

c2
i .

3.2 VC Theory: The First Theory of Generalization

3.2.1 Universal Approximation Theorem

Recall: Generalization, performance difference between training and test data. (over-fitting)

Representation power of Deep Neural network: Given any continuous target function f(x), x ∈ Rd. For any
ε > 0, there exists a neural network NN(·), such that ∥f(x) − NN(x)∥ ≤ ε. This is called the Universal
Approximation Theorem.
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3.2.2 An Oversimplified Setting

Suppose f is the learned classifier from training data (x1, y1), . . . , (xn, yn). The training error can be formu-
lated as

1

n

n∑
i=1

I[yi ̸= f(xi)]

while the test error can be formulated as

Pr[Y ̸= f(X)] = E (I[Y ̸= f(X)]) .

The training error is the average of n Bernoulli random variables, while the test error is its expectation.
By the concentration property, we expect the training error to converge to the test error as n increases.
Then why would there be over-fitting? The reason is that f is learned from (x1, y1), . . . , (xn, yn), leading to
f(x1), . . . , f(xn) being non-independent.

Let’s consider a setting where we collect training data (xi, yi)
n and learn f ∈ F to fit the training data. We

call F the hypothesis space (A set of classifier, or a model). We assume |F| < ∞. Under this oversimplified
assumption, we can estimate the error using the union bound:

Pr

[
1

n

n∑
i=1

I[yi ̸= f(xi)]− Pr[Y ̸= f(X)] ≥ ε

]
≤ |F|e−2nε2 .

Larger hypothesis space implies larger upper bound and thus larger probability of over-fitting. However, we
know in realistic settings the hypothesis space is infinitely large. But from this we learnt that the size of F
Highly determines the gap between two sets. The purpose of VC theory is to study the generalization error
when |F| = ∞.


