0.1 Recap

There are three significant parts of Learning: representation, optimization and generalization.

Recall the formulation of supervised learning, the assumption is: i.i.d. data D(X,Y"). For both training data
(1,y1) *+* (Tn,Yn), and test data (xn41,Yn+1) . And the most important thing is that all observation is
training data.

Preparation We know two simple inequalities followed:
Theorem 0.1 (Markov Inequality) X is a non-negative random variable, EX exists, then Yk > 0
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And

Theorem 0.2 (Chebyshev Inequality) X is a random variable, EX,Var(X) ezist, Var(X) = o2, then
Yk >0
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Then when we have more information about moments of X, can we get a better bound about the tail
probability? For the case that we know finitely many moments of X, by adding a parameter ¢, we can
actually get the following estimation:
Proposition 0.3 Random variable X >0, EX,EX?---EX" exist, Yk > 0

P(X >Fk)=P(X"> k), Vt=1,2,...,r

Hence,
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For the case that we know all moments of X, we may need a better way to use all the information of moments.

Similar to the use of generating function in solving a,, for a,is = pa,i1 + qa,, a good way to use all the
information of moments is to use moment generating function.

Definition 0.4 (Moment Generating Function) X is a random variable. All moments of X exist.
Then the moment generating function of X is defined as
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Using moment generating function, with the method of adding a parameter ¢, we can get following well-known
inequality, which gives us a much more better upper bound of the tail probability.

Theorem 0.5 (Chernoff Inequality) X is a random variable, EetX exists. Then Yk > 0
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0.2 Concentration Inequality

Consider that X, X1, X5 ... X, are i.i.d. Bernoulli random variables, EX =P(X =1) = p.

Use Chebyshev inequality, we get
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But by central limit theorem, we guess the decay of this probability should be e~
true? Some concepts and the Chernoff inequality will be useful.
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Definition 0.6 (Entropy) X is a random variable with probability distribution (p1,pa,...,pn), then the
entropy of X, denoted as H(X), is defined by

H(X):=— Zpi log, pi(bits)
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H(X):=- Zpi In p; (nats)
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Definition 0.7 (Relative Entropy) P = (p1,p2,-..,pn) and Q = (q1,q2,...,qn) are two probability dis-
tributions. The relative entropy is defined by

D(P||Q) : Zpl log2 bzts)

Relative entropy is one way of describing the difference between two distributions. Actually it’s non-negative.

Proposition 0.8 By Jensen’s inequality,
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For the convenience of notation, we define

Definition 0.9 (Bernoulli Relative Entropy) P = (p,1 —p), Q = (q,1 — q) are Bernoulli distributions.
The Bernoulli relative entropy is defined by

0.2.1 Chernoff Bound

We are ready to get the Chernoff bound.
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Theorem 0.10 (Chernoff Bound) X, X, X5 ... X, are i.i.d. Bernoulli random variables, EX = P(X =
1) = p, Var(z) = p(1 — p). By Chernoff inequality, we have
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The proof of the last equation is left as exercise, so we omit the proof. It’s not hard, and here is a hint for
students: Function log(x) is strictly increasing, so the minimum points of log(f) and f are the same. Then
get the minimum point of log(f) by derivation.

What if X is not a Bernoulli random variable? Intuitively, it should concentrate around the expectation

more easily than Bernoulli case. To show this rigorously, we can use Jensen’s inequality.

Proposition 0.11 X, Xy, X5 ... X, are i.i.d. random variables with X € [0,1], EX = p € [0,1], then

EetX = BetX1+0-X)0) < g (Xet +1-— X) = (pet +1 —p)
So,
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The more general case that Xp,Xs...X, are independent random variables, X; € [0,1],EX; = p; €
[0,1],p= 13" | p; is left as exercise.
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