0.1 Recap

There are three significant parts of Learning: representation, optimization and generalization.
Recall the formulation of supervised learning, the assumption is: i.i.d. data $D(X, Y)$. For both training data $\left(x_{1}, y_{1}\right) \cdots\left(x_{n}, y_{n}\right)$, and test data $\left(x_{n+1}, y_{n+1}\right) \cdots$. And the most important thing is that all observation is training data.

Preparation We know two simple inequalities followed:
Theorem 0.1 (Markov Inequality) X is a non-negative random variable, $E X$ exists, then $\forall k>0$

$$
\mathbb{P}(X \geq k) \leq \frac{E X}{k}
$$

And
Theorem 0.2 (Chebyshev Inequality) X is a random variable, $E X, \operatorname{Var}(X)$ exist, $\operatorname{Var}(X)=\sigma^{2}$, then $\forall k>0$

$$
\mathbb{P}(|X-E X| \geq k) \leq \frac{\sigma^{2}}{k^{2}}
$$

Then when we have more information about moments of X, can we get a better bound about the tail probability? For the case that we know finitely many moments of X, by adding a parameter t, we can actually get the following estimation:

Proposition 0.3 Random variable $X \geq 0, E X, E X^{2} \cdots E X^{r}$ exist, $\forall k>0$

$$
\mathbb{P}(X \geq k)=\mathbb{P}\left(X^{t} \geq k^{t}\right), \forall t=1,2, \ldots, r
$$

Hence,

$$
\mathbb{P}(X \geq k) \leq \min _{t \in[r]} \frac{E X^{t}}{k^{t}}
$$

For the case that we know all moments of X, we may need a better way to use all the information of moments. Similar to the use of generating function in solving a_{n} for $a_{n+2}=p a_{n+1}+q a_{n}$, a good way to use all the information of moments is to use moment generating function.

Definition 0.4 (Moment Generating Function) X is a random variable. All moments of X exist. Then the moment generating function of X is defined as

$$
E e^{t X}=1+t E X+\frac{t^{2}}{2} E X^{2}+\cdots
$$

Using moment generating function, with the method of adding a parameter t, we can get following well-known inequality, which gives us a much more better upper bound of the tail probability.

Theorem 0.5 (Chernoff Inequality) X is a random variable, Ee ${ }^{t X}$ exists. Then $\forall k>0$

$$
\mathbb{P}(X \geq k)=\mathbb{P}\left(e^{t X} \geq e^{t k}\right) \leq \frac{E e^{t X}}{e^{t k}}
$$

Hence,

$$
\mathbb{P}(X \geq k) \leq \inf _{t>0} \frac{E e^{t X}}{e^{t k}}
$$

0.2 Concentration Inequality

Consider that $X, X_{1}, X_{2} \ldots X_{n}$ are i.i.d. Bernoulli random variables, $E X=\mathbb{P}(X=1)=p$.
Use Chebyshev inequality, we get

$$
\mathbb{P}\left(\left|\frac{1}{n} \sum_{i=1}^{n} X_{i}-E X\right| \geq \varepsilon\right) \leq \frac{\operatorname{Var}\left(\frac{1}{n} \sum_{i=1}^{n} X_{i}\right)}{\varepsilon^{2}}=\frac{p(1-p)}{n \varepsilon^{2}}
$$

But by central limit theorem, we guess the decay of this probability should be $e^{-O(n)}$. How to show it's true? Some concepts and the Chernoff inequality will be useful.

Definition 0.6 (Entropy) X is a random variable with probability distribution $\left(p_{1}, p_{2}, \ldots, p_{n}\right)$, then the entropy of X, denoted as $H(X)$, is defined by

$$
H(X):=-\sum_{i=1}^{n} p_{i} \log _{2} p_{i}(b i t s)
$$

Or

$$
H(X):=-\sum_{i=1}^{n} p_{i} \ln p_{i}(n a t s)
$$

Definition 0.7 (Relative Entropy) $\mathcal{P}=\left(p_{1}, p_{2}, \ldots, p_{n}\right)$ and $\mathcal{Q}=\left(q_{1}, q_{2}, \ldots, q_{n}\right)$ are two probability distributions. The relative entropy is defined by

$$
D(P \| Q):=\sum_{i=1}^{n} p_{i} \log _{2} \frac{p_{i}}{q_{i}}(b i t s)
$$

Relative entropy is one way of describing the difference between two distributions. Actually it's non-negative.

Proposition 0.8 By Jensen's inequality,

$$
D(P \| Q):=-\sum_{i=1}^{n} p_{i} \log _{2} \frac{q_{i}}{p_{i}} \geq-\log _{2}\left(\sum_{i=1}^{n} p_{i} \frac{q_{i}}{p_{i}}\right)=0
$$

For the convenience of notation, we define

Definition 0.9 (Bernoulli Relative Entropy) $\mathcal{P}=(p, 1-p), \mathcal{Q}=(q, 1-q)$ are Bernoulli distributions. The Bernoulli relative entropy is defined by

$$
D_{B}(P \| Q):=p \ln \frac{p}{q}+(1-p) \ln \frac{1-p}{1-q}
$$

0.2.1 Chernoff Bound

We are ready to get the Chernoff bound.

Theorem 0.10 (Chernoff Bound) $X, X_{1}, X_{2} \ldots X_{n}$ are i.i.d. Bernoulli random variables, $E X=\mathbb{P}(X=$ $1)=p, \operatorname{Var}(x)=p(1-p)$. By Chernoff inequality, we have

$$
\begin{gathered}
\mathbb{P}\left(\frac{1}{n} \sum_{i=1}^{n} X_{i}-E X \geq \varepsilon\right)=\mathbb{P}\left(\sum_{i=1}^{n} X_{i} \geq n(p+\varepsilon)\right) \leq \inf _{t>0} E e^{t \sum_{i=1}^{n} X_{i}} e^{-n t(p+\varepsilon)} \\
E e^{t \sum_{i=1}^{n} X_{i}}=E\left(\prod_{i=1}^{n} e^{t X_{i}}\right)=\prod_{i=1}^{n} E e^{t X_{i}}=\left(E e^{t X}\right)^{n}=\left(p e^{t}+1-p\right)^{n} \\
\inf _{t>0} E e^{t \sum_{i=1}^{n} X_{i}} e^{-n t(p+\varepsilon)}=\inf _{t>0}\left(p e^{t}+1-p\right)^{n} e^{-n t(p+\varepsilon)}=e^{-n D_{B}(p+\epsilon \| p)}
\end{gathered}
$$

The proof of the last equation is left as exercise, so we omit the proof. It's not hard, and here is a hint for students: Function $\log (x)$ is strictly increasing, so the minimum points of $\log (f)$ and f are the same. Then get the minimum point of $\log (f)$ by derivation.

What if X is not a Bernoulli random variable? Intuitively, it should concentrate around the expectation more easily than Bernoulli case. To show this rigorously, we can use Jensen's inequality.

Proposition $0.11 X, X_{1}, X_{2} \ldots X_{n}$ are i.i.d. random variables with $X \in[0,1], E X=p \in[0,1]$, then

$$
E e^{t X}=E e^{t(X \cdot 1+(1-X) \cdot 0)} \leq E\left(X e^{t}+1-X\right)=\left(p e^{t}+1-p\right)
$$

So,

$$
\begin{aligned}
\mathbb{P}\left(\frac{1}{n} \sum_{i=1}^{n} X_{i}-E X \geq \varepsilon\right) & \leq \inf _{t>0} E e^{t \sum_{i=1}^{n} X_{i}} e^{-n t(p+\varepsilon)} \\
& \leq \inf _{t>0}\left(p e^{t}+1-p\right)^{n} e^{-n t(p+\varepsilon)} \\
& =e^{-n D_{B}(p+\epsilon \| p)}
\end{aligned}
$$

The more general case that $X_{1}, X_{2} \ldots X_{n}$ are independent random variables, $X_{i} \in[0,1], E X_{i}=p_{i} \in$ $[0,1], p=\frac{1}{n} \sum_{i=1}^{n} p_{i}$ is left as exercise.

