
0.1 Recap

There are three significant parts of Learning: representation, optimization and generalization.

Recall the formulation of supervised learning, the assumption is: i.i.d. data D(X,Y ). For both training data
(x1, y1) · · · (xn, yn), and test data (xn+1, yn+1) · · · . And the most important thing is that all observation is
training data.

Preparation We know two simple inequalities followed:

Theorem 0.1 (Markov Inequality) X is a non-negative random variable, EX exists, then ∀k > 0

P(X ≥ k) ≤ EX

k

And

Theorem 0.2 (Chebyshev Inequality) X is a random variable, EX,Var(X) exist, Var(X) = σ2, then
∀k > 0

P(|X − EX| ≥ k) ≤ σ2

k2

Then when we have more information about moments of X, can we get a better bound about the tail
probability? For the case that we know finitely many moments of X, by adding a parameter t, we can
actually get the following estimation:

Proposition 0.3 Random variable X ≥ 0, EX,EX2 · · ·EXr exist, ∀k > 0

P(X ≥ k) = P(Xt ≥ kt),∀t = 1, 2, . . . , r

Hence,

P(X ≥ k) ≤ min
t∈[r]

EXt

kt

For the case that we know all moments of X, we may need a better way to use all the information of moments.
Similar to the use of generating function in solving an for an+2 = pan+1 + qan, a good way to use all the
information of moments is to use moment generating function.

Definition 0.4 (Moment Generating Function) X is a random variable. All moments of X exist.
Then the moment generating function of X is defined as

EetX = 1 + tEX +
t2

2
EX2 + · · ·

Using moment generating function, with the method of adding a parameter t, we can get following well-known
inequality, which gives us a much more better upper bound of the tail probability.

Theorem 0.5 (Chernoff Inequality) X is a random variable, EetXexists. Then ∀k > 0

P(X ≥ k) = P(etX ≥ etk) ≤ EetX

etk

Hence,

P(X ≥ k) ≤ inf
t>0

EetX

etk
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0.2 Concentration Inequality

Consider that X,X1, X2 . . . Xn are i.i.d. Bernoulli random variables, EX = P(X = 1) = p.

Use Chebyshev inequality, we get

P

(∣∣∣∣∣ 1n
n∑

i=1

Xi − EX

∣∣∣∣∣ ≥ ε

)
≤

Var( 1n
∑n

i=1 Xi)

ε2
=

p(1− p)

nε2

But by central limit theorem, we guess the decay of this probability should be e−O(n). How to show it’s
true? Some concepts and the Chernoff inequality will be useful.

Definition 0.6 (Entropy) X is a random variable with probability distribution (p1, p2, . . . , pn), then the
entropy of X, denoted as H(X), is defined by

H(X) := −
n∑

i=1

pi log2 pi(bits)

Or

H(X) := −
n∑

i=1

pi ln pi(nats)

Definition 0.7 (Relative Entropy) P = (p1, p2, . . . , pn) and Q = (q1, q2, . . . , qn) are two probability dis-
tributions. The relative entropy is defined by

D(P ||Q) :=

n∑
i=1

pi log2
pi
qi
(bits)

Relative entropy is one way of describing the difference between two distributions. Actually it’s non-negative.

Proposition 0.8 By Jensen’s inequality,

D(P ||Q) := −
n∑

i=1

pi log2
qi
pi

≥ − log2

(
n∑

i=1

pi
qi
pi

)
= 0

For the convenience of notation, we define

Definition 0.9 (Bernoulli Relative Entropy) P = (p, 1− p),Q = (q, 1− q) are Bernoulli distributions.
The Bernoulli relative entropy is defined by

DB(P ||Q) := p ln
p

q
+ (1− p) ln

1− p

1− q

0.2.1 Chernoff Bound

We are ready to get the Chernoff bound.
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Theorem 0.10 (Chernoff Bound) X,X1, X2 . . . Xn are i.i.d. Bernoulli random variables, EX = P(X =
1) = p,Var(x) = p(1− p). By Chernoff inequality, we have

P

(
1

n

n∑
i=1

Xi − EX ≥ ε

)
= P

(
n∑

i=1

Xi ≥ n(p+ ε)

)
≤ inf

t>0
Eet

∑n
i=1 Xie−nt(p+ε)

Eet
∑n

i=1 Xi = E

(
n∏

i=1

etXi

)
=

n∏
i=1

EetXi =
(
EetX

)n
=
(
pet + 1− p

)n
inf
t>0

Eet
∑n

i=1 Xie−nt(p+ε) = inf
t>0

(
pet + 1− p

)n
e−nt(p+ε) = e−nDB(p+ε||p)

The proof of the last equation is left as exercise, so we omit the proof. It’s not hard, and here is a hint for
students: Function log(x) is strictly increasing, so the minimum points of log(f) and f are the same. Then
get the minimum point of log(f) by derivation.

What if X is not a Bernoulli random variable? Intuitively, it should concentrate around the expectation
more easily than Bernoulli case. To show this rigorously, we can use Jensen’s inequality.

Proposition 0.11 X,X1, X2 . . . Xn are i.i.d. random variables with X ∈ [0, 1], EX = p ∈ [0, 1], then

EetX = Eet(X·1+(1−X)·0) ≤ E
(
Xet + 1−X

)
=
(
pet + 1− p

)
So,

P

(
1

n

n∑
i=1

Xi − EX ≥ ε

)
≤ inf

t>0
Eet

∑n
i=1 Xie−nt(p+ε)

≤ inf
t>0

(
pet + 1− p

)n
e−nt(p+ε)

= e−nDB(p+ε||p)

The more general case that X1, X2 . . . Xn are independent random variables, Xi ∈ [0, 1], EXi = pi ∈
[0, 1], p = 1

n

∑n
i=1 pi is left as exercise.
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