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13.1 Definition

The multi-arm Bandits Problem is a simplified reinforcement learning problem. Because we don’t know the
actual reward, the trade-off between exploration and exploitation is necessary.

Arm 1 2 3 ... k
parameters µ(1) µ(2) µ(3) ... µ(k), µ(i) ∈ [0, 1].

1. The loss of an arm a is iid random, with expectation µ(a), loss∈ [0, 1].

2. a∗ = argminaµ(a).

3. Regret =
∑T

t=1 l(at)− Tµ(a∗).

13.2 Upper Confidence Bound(UCB) algorithm

Key Idea: Optimism in the face of uncertainty. To be exact, after t rounds, each arm has an
estimated interval of loss (with high probability), and we just assume the lowest bound of the interval is
the loss probability of the arm. The algorithm is called the upper confidence bound because people used to
consider the probability of a win in the past. The implementation of the UCB algorithm is as follows. Note

Figure 13.1: UCB Algorithm
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that at the very beginning, if there exists nt−1(a) = 0, then UCBt(a) = −∞. Therefore the algorithm tends
to explore all arms until each arm has been chosen once.

13.2.1 Regret of UCB

Theorem 13.1 the regret of the UCB algorithm can be bounded as:

R(T ) := E

[
T∑

t=1

l(at)

]
− Tµ(a∗) ≤

∑
a:∆a>0

(
16 lnT

∆a
+ 2∆a)

where ∆a = µ(a)− µ(a∗).

If the gap ∆a are constants, then Regret≤ O(K lnT )

Notice that when ∆a is small (e.g. 1/T ), the given upper bound can be very large, which is counter-intuitive.
To fix this problem, we revise the bound as{

R(T ) ≤ O(
√
T lnT ) ,∆a ≥ 1√

T

R(T ) ≤
√
T ,∆a < 1√

T

So we have R(T ) ≤ O(
√
T lnT ) +

√
T = O(

√
T lnT )

13.2.2 Thompson Sampling

The Frequency and Bayesian is two school in statistics. The Frequency School take the parameter in the
model as a fix value and use MLE to estimate it , while Bayesian School take the parameter as a random
variable, and try to induce its posterior distribution.

Thompson Sampling is a Bayesian method that assumes arm a to have Beta distribution, and update the
posterior distribution per step to estimate the optimal choice.

13.3 Chain of Thought

Autoregressive Transformers

• Most LLMs follow the autogressive design paradigm.

• Main idea: various tasks can be uniformly treated as sequence generation problems

• The input along with the task description can be together encoded as a sequence of tokens, called the
prompt

• The answer is generated by predicting subsequent tokens conditioned on the prompt in an autoregressive
way.

Chain of Thought Prompting (CoT)

• Crucial for tasks involving math or reasoning

• Two typical triggering methods:Zero-shot and Few-shot
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Questions

1. How can we theoretically understand the power of CoT generation?

2. How can these prompts trigger the CoT generation? Can we design better prompting strategies to
further exploit the power of LLMs?

3. How can CoT emerge in LLMs trained over massive data?

and we focus on the first question.

13.3.1 Autoregressive Tansformers

Input : a sequence of tokens s of length n.

Initial embedding : X(0) = [v1 + p1, . . . , vn + pn]
T ∈ Rn×d, where

• each input token si is converted to a d-dimensional vector vi = Embed(si) ∈ Rd

• pi ∈ Rd is the positional embedding.

Propagation: L Transformer blocks follow, each of which transforms the input by

X(l) = X(l−1) +Attn(l)(X(l−1)) + FFN (l)
(
X(l−1) +Attn(L)(X(l−1))

)
• Attn(l) is a multi-head self-attention layer,

• FFN (l) is a 2-layer feed forward network with GeLU activation.

FFN (l)(X) = σ(XW
(l)
1 )W

(l)
2

13.3.2 Multi-Head self Attention

CoT is The Key to Solving Math Problems

• Problem Formulation

• Log-precision Transformer

• Negative Results

– Assume TC0 ̸= NC1. For any prime number p, integer L, and any polynomial Q

– there exists a problem size n such that no log-precision auto regressive Transformer with depth L
and hidden dimension d < Q(n) can directly solve the problem Arithmetic(n,p)

– there exists a problem size m such that no log-precision auto regressive Transformer with depth
L and hidden dimension d < O(m) can directly solve the problem Equation(m, p)

• Key Insight:Circuit Complexity

• How about Generating a CoT solution?
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– For any prime p. For any integer n ¿ 0, there exists an auto regressive Transformer with constant
hidden size d (independent of a), depth l = δ and δ heads in each layer that can generate the CoT
solution for all inputs in Arithmetic(n, p).Moreover, all parameter values in the Transformer are
bounded by O(poly(n)).

– Fix any prime p. For any integer m ¿ 0, there exists an auto regressive Transformer with constant
hidden size d (independent of m), depth L = δ, and δ heads in each layer that can generate the
CoT solution for all inputs in Equation(rm, p).Moreover, all parameter values in the Transformer
are bounded by O(poly(m))

• Discussion

CoT is the Key to Solve General Problems

• CoT can Implement Dynamic Progarmming

• Experiments : Length Extrapolation: Long Sequence

• Future Work

– How do prompt influent the CoT generation?

– How to understand the role of model size played in CoT generation quailty?

– How can CoT emerge in LLMS trained over massive data?

– Designing better architechtures to solve complex without resorting to CoT generation
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