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11.1 Dimensionality Reduction

11.1.1 Review on PCA

Assuming we have n points x1, x2, ...xn ∈ Rd, we want to find a linear mapping Φ : Rd → Rd′
(d′ < d), such

that the distance between the original point and the mapped point is approximately equal.

min
Φ

n∑
i=1

||xi − Φ(xi)||2

s.t. Φ : Rd → Rd′
(d′ < d)

11.1.2 JL Lemma

Instead of minimizing the projection distance, we can consider the distance between any pair of data points.
We hope to find a linear mapping that hardly changes the distance between any pair of data points. We can
formulate the problem as follows.

(1− ϵ)∥xi − xj∥2 ≤ ∥Φ(xi)− Φ(xj)∥2 ≤ (1 + ϵ)∥xi − xj∥2, ∀i, j ∈ [n], (11.1)

where xi, i ∈ [n] and Φ have the same definition as 11.1.1, and ϵ > 0 is a given constant.

JL Lemma shows that, if d′ ≥ 8 lnn
ϵ2 , then there exists such a linear mapping. To make the proof, we begin

with 3 lemmas.

Lemma 11.1 (The moment-generating function of χ2 random variables) Let Q be a ramdom vari-
able following a χ2 distribution with k degrees of freedom. Its moment-generating function

E[etQ] = (1− 2t)−
k
2 , t ∈ (0,

1

2
).

Proof: Since Q is a ramdom variable following a χ2 distribution with k degrees of freedom, we have

Q =

k∑
i=1

X2
i , Xi ∼

i.i.d
N(0, 1), ∀i ∈ [k].
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Then,
E[etQ] = (E[etX1 ])k.

And then we can calculate E[etX1 ] by

E[etX1 ] =
1√
2π

∫ +∞

−∞
etx

2

e−
x2

2 dx

=
1√

2π(1− 2t)

∫ +∞

−∞
e−

(
√

1−2tx)2

2 d
√
1− 2tx

= (1− 2t)−
1
2 .

From which we can get

E[etQ] = (1− 2t)−
k
2 .

Lemma 11.2 Let Q be a ramdom variable following a χ2 distribution with k degrees of freedom, then

P[(1− ϵ)k ≤ Q ≤ (1 + ϵ)k] ≥ 1− 2e−(ϵ2−ϵ3)k/4,∀ϵ ∈ (0,
1

2
).

Proof: Consider one side,

P(Q ≥ (1 + ϵ)k) = P(etQ ≥ e(1+ϵ)tk),∀t ∈ (0,
1

2
).

Basically, we hope to achieve a better bound utilizing the moment-generating function. Firstly, we can apply
Markov’s Inequality.

P[etQ ≥ e(1+ϵ)tk] ≤ E[etQ]
e(1+ϵ)tk

=
(1− 2t)−

k
2

e(1+ϵ)tk
.

By taking the derivative, the minimal point of the right side is t = ϵ
2(1+ϵ) , so

P(Q ≥ (1 + ϵ)k) ≤ (
1 + ϵ

eϵ
)

k
2 .

Using Taylor’s formula for ln(1 + x), we can get

ln(1 + ϵ) ≤ ϵ− ϵ2

2
+

ϵ3

3
≤ ϵ− ϵ2 − ϵ3

2
, ϵ ∈ (0,

1

2
).

Thus,

1 + ϵ ≤ eϵ · e−
ϵ2−ϵ3

2 ,

1 + ϵ

eϵ
≤ e−

ϵ2−ϵ3

2 .

So we get

P(Q ≥ (1 + ϵ)k) ≤ (
1 + ϵ

eϵ
)

k
2 ≤ e−(ϵ2−ϵ3)k/4

The same goes with the other side, and by applying the union bound, we reach

P[(1− ϵ)k ≤ Q ≤ (1 + ϵ)k] ≥ 1− 2e−(ϵ2−ϵ3)k/4,∀ϵ ∈ (0,
1

2
).

Based on 11.2, we introduce the following lemma.
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Lemma 11.3 For x ∈ RN , we define k < N and assume the elements from the matrix A ∈ Rk×N are
independently sampled from normal distribution N(0, 1). For any ϵ ∈ (0, 1

2 ),

P[(1− ϵ)∥x∥2 ≤ ∥ 1√
k
Ax∥2 ≤ (1 + ϵ)∥x∥2] ≥ 1− 2e−(ϵ2−ϵ3)k/4.

Proof: Let x̂ = (x̂1, x̂2, · · · , x̂k)
T = Ax ∈ Rk.

Since x̂i, ∀i ∈ [k] are linear combinations of gaussian variables Aij , j ∈ [N ] with zero expectations, they are
gaussian variables with zero expectations as well. What’s more,

E[x̂2
i ] = E[(

N∑
j=1

Aijxj)
2].

As Aij are sampled independently, all the cross terms

E[Aij1Aij2xj1xj2 ] = xj1xj2E[Aij1 ]E[Aij2 ] = 0,∀i ∈ [k], j1, j2 ∈ [N ],

and as the variance of the normal distribution is 1, the second-order moment for all Aij are 1, thus

E[A2
ijx

2
j ] = E[A2

ij ]x
2
j = x2

j ,∀i ∈ [k], j ∈ [N ].

Hence,

var[x̂2
i ] = E[x̂2

i ] = E[(
N∑
j=1

Aijxj)
2] =

N∑
j=1

E[A2
ijx

2
j ] =

N∑
j=1

x2
j = ∥x∥2,∀i ∈ [k].

Let Ti =
x̂i

∥x∥ ,∀i ∈ [k], we know Ti ∼ N(0, 1) and are independent. Thus,
∑k

i=1 T
2
i =

∑k
i=1 x̂i

2

∥x∥2 = ∥x̂∥2

∥x∥2 are χ2

variables with k degrees of freedom. Using this and 11.2, the inequality of this lemma is trivial.

Finally we can prove JL Lemma.

Lemma 11.4 (Johnson-Lindenstrauss) Given data points x1, x2, ...xn ∈ Rd, ϵ ∈ (0, 1
2 ), if d′ ≥ 8 lnn

ϵ2 ,

then there exists a linear mapping Φ : Rd → Rd′
, such that ∀i, j ∈ [n], Equation (11.1) holds true.

Proof: We choose f = 1√
d′A, where A ∈ Rd′×d, and all the elements are independently sampled from

N(0, 1). According to 11.3, ∀i, j ∈ [n] we have

P[(1− ϵ)∥xi − xj∥2 ≤ ∥ 1√
d′
(Φ(xi)− Φ(xj))∥2 ≤ (1 + ϵ)∥xi − xj∥2] ≥ 1− 2e−(ϵ2−ϵ3)d′/4.

This can be considered as a success rate. In contrast, we consider the fail rate, i.e., for any given pair
(i, j), i, j ∈ [n],

P[fail] ≤ 2e−(ϵ2−ϵ3)d′/4.

Applying the union bound, for all the n(n−1)
2 pairs of data, we hope

P[totalfail] ≤ n(n− 1)e−(ϵ2−ϵ3)d′/4 ≤ n2e−(ϵ2−ϵ3)d′/4 < 1,

so there exists a linear mapping we want.

This is exactly

d′ ≥ 8 lnn

ϵ2
,

so we’ve finally proved JL Lemma.
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11.2 Algorithmic Stability

Though VC theory can give generalization bounds based on hypothesis set used for learning, it ignores the
specific algorithm. One may ask if an analysis of the properties of a specific algorithm could lead to finer
guarantees. In this section, we will introduce algorithmic stability to derive algorithm-dependent learning
guarantees.

Definition 11.5 (Uniform stability) Let A be a learning algorithm, S be a training dataset (z1, · · · , zn).
Let Si = (z1, · · · , zi−1, z

′
i, zi+1, · · · , zn) denote a neighbouring dataset that differ from S by a single point.

Let A(S) denote a model learned from S by A. Let ℓ(·, ·) be a loss function.

The learning algorithm A is said to have uniform stability β with respect to loss ℓ(·, ·), if ∀S, ∀i,∀z′i,∀z

|ℓ(A(S), z)− ℓ(A(Si), z)| ≤ β

Generally, the coefficient β depends on the sample size n. A learning algorithm is said to be stable if
β(n) = O(1/

√
n) and to be very stable if β(n) = O(1/n).

Definition 11.6 (Risk and Empirical risk) Define the risk (similar to test error or generalization error)
of an algorithm A on training dataset S sampled from data distribution D

R(A(S)) := E
z∼D

[ℓ(A(S), z)] ,

and its empirical risk (similar to training error)

Remp(A(S)) :=
1

n

∑
zi∈S

ℓ(A(S), zi)

where n = |S|.

Lemma 11.7 If algorithm A has a uniform stability β and is symmetric on (z1, · · · , zn), i.e. for any
permutation σ, A(z1, · · · , zn) = A(zσ(1), · · · , zσ(n)), then

ES [R(A(S))−Remp(A(S))] ≤ β.

Proof: For generalization risk,

ES [R(A(S))] = ESEz[ℓ(A(S), z)] = Ez1,··· ,zn,z[ℓ(A(S), z)] = ES,z1 [ℓ(A(S′), z1)]

where S′ = (z, z2, · · · , zn)

For empirical risk,

ES [Remp(A(S))] = ES

[
1

n

n∑
i=1

ℓ(A(S), zi)

]
= ES,z1 [ℓ(A(S), z1)]

the equality holds according to the symmetry of A.

Thus
ES [R(A(S))−Remp(A(S))] = ES,z1 [ℓ(A(S), z1)− ℓ(A(S′), z1)] ≤ β
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11.2.1 Algorithmic Stability of SGD and GD

Deep neural networks have already shown excellent behaviours for generalization. However, if we try to
explain it with VC theory, we will find that the VC dimension of deep neural networks is O(E), where E
is the number of parameters, and is usually far greater than the number of training data. This will lead to
meaningless bounds.

A possible way is to analyze the algorithmic stability of training strategy or optimization algorithm such as
GD and SGD.

Intuitively, SGD is a stable algorithm since the randomness of SGD somehow “smooths” the impact of
changing a single data. However, we cannot make the same assertion on GD, as it always uses all data to
optimize the model, and there exists the possibility that a single data makes a great difference.

In [HRS16], the authors proved bounds on the uniform stability of SGD. In [CP18], the authors proved similar
uniform stability of GD in the convex setting. They also constructed an explicit example in a non-convex
setting, where GD is not uniformly stable while SGD is.

11.3 Proof of Von Neumann’s Minmax Theorem through online
learning

Theorem 11.8 (Von Neumann’s Minmax Theorem)

min
p

max
q

p⊤Mq = max
q

min
p

p⊤Mq

Proof:

If two players follow pure strategy, we have (refer to 7.1 in Lecture 7)

min
i

max
j

Mij = max
j

min
i

Mij

In case of two players adopting mixed strategy, it is also intuitive that playing second is better, because
playing second means having more information without any cost. So we have

min
p

max
q

p⊤Mq ≥ max
q

min
p

p⊤Mq (11.2)

We consider row player as an online learner, with each row acting like an expert, and column player as
adversary in online learning. So we can obtain an online learning algorithm as Algorithm 1.

Algorithm 1 Randomized Weighted Majority Vote for Repeated Games

Init: p1 = ( 1n , ...,
1
n ) M = (mij)n×n mij ∈ [0, 1]

Param: β ∈ (0, 1)
for t = 1, 2, ..., T do
1) Row player chooses pt
2) Column player (after choosing pt) chooses qt
3) Row player observes 1⊤

i Mqt
4) Update weight pt+1(i) = pt(i)β

1⊤
i Mqt/z

end for
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So we have
T∑

t=1

p⊤t Mqt ≤
ln 1

β

1− β
min
p

T∑
t=1

p⊤Mqt +
lnn

1− β

By setting β = 1

1+
√

2 lnn
T

, we have

1

T

T∑
t=1

p⊤t Mqt ≤ min
p

1

T

T∑
t=1

p⊤Mqt +O(
log n√

T
)

≤ max
q

min
p

p⊤Mq

Then

min
p

max
q

p⊤Mq ≤ 1

T

T∑
t=1

p⊤t Mqt

≤ max
q

min
p

p⊤Mq

Combined with (11.2), the proof is completed.
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