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10.1 Online Learning

The setting of online learning with expert advice can be described as follows:

1. There are T timesteps t = 1, 2, · · · , T , each timestep t has a ground truth label yt ∈ {0, 1}

2. There are N experts, at each timestep t, each expert i makes a prediction ỹt,i ∈ {0, 1}

3. The online learner needs to make a prediction ỹt ∈ {0, 1} based on the experts’ predictions up until
now and the previous ground truth labels

The performance can be evaluated with ”regret”, which is the performance of the online learner minus the
performance of the best expert.

10.1.1 Weighted Majority Vote

Algorithm 1 Weighted Majority Vote

1: Define online learner’s prediction at timestep t ỹt, ground truth label at timestep t yt ∈ {0, 1}, the
number of experts N

2: Input expert i’s advice at timestep t ỹt,i, parameter β ∈ (0, 1)
3: Initialize w1,i = 1
4: for t = 1, 2, ..., T do
5: Predict ỹt = I[Σiwt,iỹt,i ≥ 1

2Σiwt,i]
6: if ỹt = yt then
7: wt+1,i = wt,i

8: else

9: wt+1,i =

{
βwt,i, ỹt,i ̸= yt

wt,i, ỹt,i = yt
10: end if
11: end for

Let LT = ΣtI[ỹt ̸= yt],mT,i = ΣtI[ỹt,i ̸= yt],m
∗
T = mini mT,i, then we have LT ≤

log 1
β

log 2
1+β

m∗
T + logN

log 2
1+β

.
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Proof:

Let Wt = Σiwt,i, then for every t satisfying ŷt ̸= yt, at least half of the weights needs to be multiplied by β,

so Wt+1 ≤ 1+β
2 Wt.

So we have WT+1 ≤W1(
1+β
2 )LT = N( 1+β

2 )LT .

At the same time, the best expert makes m∗
T mistakes, so its weight decreases at most m∗

T times, so after T
timesteps the weight must be larger or equal to βm∗

T , and we have WT+1 ≥ βm∗
T .

With N( 1+β
2 )LT ≥ βm∗

T , we can get LT ≤
log 1

β

log 2
1+β

m∗
T + logN

log 2
1+β

.

10.1.2 Randomized Weighted Majority Vote

Algorithm 2 Randomized Weighted Majority Vote

1: Define online learner’s prediction at timestep t ỹt, ground truth label at timestep t yt ∈ {0, 1}, the
number of experts N

2: Input expert i’s advice at timestep t ỹt,i, parameter β ∈ (0, 1)
3: Initialize w1,i = 1
4: for t = 1, 2, ..., T do

5: Predict ỹt ∼ Bernoulli(
Σiwt,iỹt,i

Σiwt,i
)

6: wt+1,i =

{
βwt,i, ỹt,i ̸= yt

wt,i, ỹt,i = yt
7: end for

The only differences between this algorithm and the deterministic algorithm are that the online learner’s
prediction is stochastic and that the weights of experts who make wrong predictions are always decreased
no matter whether the online learner makes a correct prediction.

With the same notations in the above section, we have ELT ≤ (2− β)m∗
T + logN

1−β

Proof:

We have ELT = ΣtΣi
wt,i

Wt
|ỹt,i − yt|.

If we define pt as the possibility of the online learner makes a wrong prediction at timestep t, then let Wt be
the potential function, then Wt+1 = Wt−Σi(1−β)wt,iI[ỹt,i− yt] = (1− pt(1−β))Wt ≤ exp (−pt(1− β))Wt

So WT+1 ≤ exp (−(1− β)Σtpt)W1 = N exp (−(1− β)ELT )

As WT+1 ≥ βm∗
T , we have N exp (−(1− β)ELT ) ≥ βm∗

T , that is logN − (1 − β)ELT ≥ m∗
T log β, which

means ELT ≤ −m∗
T log β
1−β + logN

1−β

With Taylor expansion we have log (1 + (β − 1))) ≥ (β−1)−(β−1)2 as β−1 ≤ 0, so ELT ≤ (2−β)m∗
T +

logN
1−β

Besides, if we set β to be 1−
√

logN
T , we have ELT

T ≤ (1 +
√

logN
T )

m∗
T

T +
√

logN
T ≤ m∗

T

T + 2
√

logN
T

If we don’t know T in advance, we can use the doubling trick or other similar methods by adjusting β in the
process. (This is part of the optional homework, so the answer won’t be provided here.)
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10.2 Unsupervised Learning

10.2.1 Clustering

Clustering is an unsupervised learning task, and is described as follows:

Given a set of data x1,x2, . . . ,xn ∈ Rd and a non-zero integer k ≤ n, clustering (k-means clustering) aims
to divide these n data into k sets S1, S2, . . . , Sk so as to minimize the following loss function:

ϕ =

k∑
i=1

∑
x∈Si

∥x− c(i)∥2

where ci is the cluster center of Si.

The most common algorithm is k−means algorithm

Algorithm 3 k-means algorithm

1: Initialize: choose k points randomly as the cluster centers c1, c2, . . . , ck
2: repeat
3: Assign each data to the cluster center with the nearest mean
4: Si ← {xj : xj is assigned to ci}
5: ci ← the mean of points in Si

6: until k cluster centers not change
7: return {c1, c2, . . . , ck}

However, this naive algorithm is only guaranteed to find a local optimum. k−means++ is an improvement
over the original k-means algorithm. We can optimize the initialization step in k−means.

Algorithm 4 Improved initialization

1: Choose c1 from {x1,x2, . . . ,xn} uniformly.
2: for i = 2, ..., k do

3: Choose ci from {x1,x2, . . . ,xn} with the distribution of D(xi)∑
j D(xj)

,

where D(xi) = min1≤s<i

{
∥xi − cs∥2

}
4: end for

Thm Let ϕ be the loss of k−means++, let ϕOPT be the optimal value of the objective function. Then

E[ϕ] ≤ 8(log k + 2) · ϕOPT
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