

# Large-scale pancreatic cancer detection via non-contrast CT and deep learning

nature medicine



**Article** 

https://doi.org/10.1038/s41591-023-02640-w

# Large-scale pancreatic cancer detection via non-contrast CT and deep learning

汇报人: 利友诚

Received: 9 February 2023

Accepted: 12 October 2023

Published online: 20 November 2023

Check for updates

Kai Cao<sup>1,19</sup>, Yingda Xia <sup>©</sup> <sup>2,19</sup>, Jiawen Yao <sup>©</sup> <sup>3,4,19</sup>, Xu Han<sup>5,19</sup>, Lukas Lambert<sup>6,19</sup>, Tingting Zhang<sup>7,19</sup>, Wei Tang<sup>8,19</sup>, Gang Jin<sup>9</sup>, Hui Jiang<sup>10</sup>, Xu Fang<sup>1</sup>, Isabella Nogues<sup>11</sup>, Xuezhou Li<sup>1</sup>, Wenchao Guo <sup>©</sup> <sup>3,4</sup>, Yu Wang<sup>3,4</sup>, Wei Fang<sup>3,4</sup>, Mingyan Qiu<sup>3,4</sup>, Yang Hou<sup>12</sup>, Tomas Kovarnik<sup>13</sup>, Michal Vocka <sup>©</sup> <sup>14</sup>, Yimei Lu<sup>8</sup>, Yingli Chen<sup>9</sup>, Xin Chen<sup>15</sup>, Zaiyi Liu<sup>15</sup>, Jian Zhou <sup>©</sup> <sup>16</sup>, Chuanmiao Xie<sup>16</sup>, Rong Zhang<sup>16</sup>, Hong Lu<sup>17</sup>, Gregory D. Hager <sup>©</sup> <sup>18</sup>, Alan L. Yuille<sup>18</sup>, Le Lu <sup>©</sup> <sup>2</sup>, Chengwei Shao <sup>©</sup> <sup>1</sup> □, Yu Shi <sup>©</sup> <sup>12</sup> □, Qi Zhang <sup>©</sup> <sup>5</sup> □, Tingbo Liang <sup>©</sup> <sup>5</sup> □, Ling Zhang <sup>©</sup> <sup>2</sup> □ & Jianping Lu <sup>©</sup> <sup>1</sup> □





它疯狂地求生存、充满创意; 它手段残酷、精明狡诈; 它寸土必争,还具有防御意识。 有时候,它似乎是在教我们要怎样才能生存下来。 ——《癌症传:重病之王》







思想自由 兼容并包 <3>

# 背景和贡献



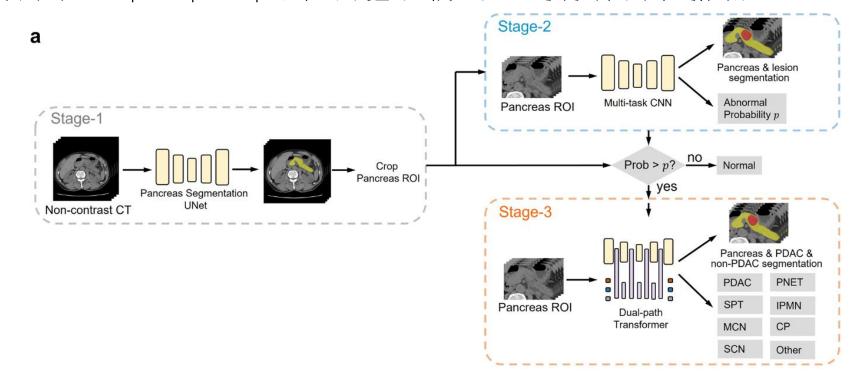
# 背景:

- 胰腺导管腺癌(PDAC)是最致命的实体恶性肿瘤,被发现时通常是晚期且无法手术,尽管PDAC的预后(根据临床经验预测的患者生存率等)较差,但其早期或偶然检测已经被证明可以显著提高患者生存率,PDAC的高危个体的中位总生存期为98年,而监测之外的个体只有15年(早发现,早干预)。
- PDAC筛查可以降低PDAC相关死亡率。然而,由于PDAC的患病率相对较低,在普通人群中进行有效筛查需要高灵敏度和高特异性,以降低过度诊断的风险。目前的的筛查技术存在局限性,无法在普通人群中实施。
- 非造影计算机断层扫描(CT)提供了大规模筛查的潜力,然而,使用非造影CT识别PDAC一直被认为是不可能的,而增强CT的成本太高,且对身体有副作用。

#### 贡献:

- 提出了人工智能胰腺癌检测(Pancreatic Cancer Detection with Artificial Intelligence, PANDA),可以通过非造影CT检测和分类胰腺病变。
- 与非增强CT结合, PANDA在区分常见胰腺病变亚型方面不劣于使用增强CT。

#### **PANDA**

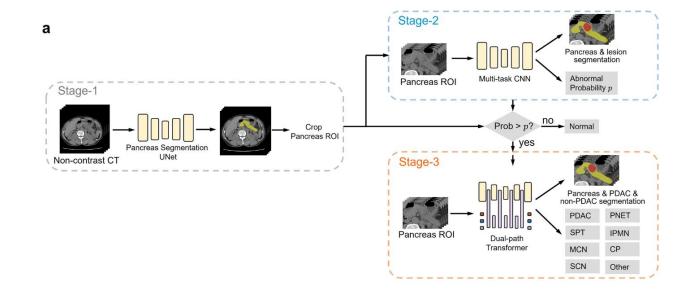


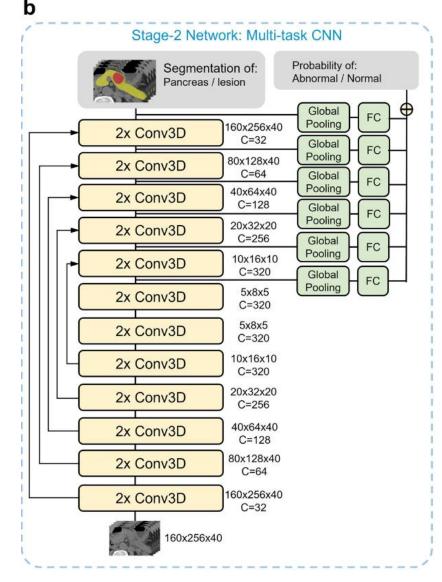

#### Stage 1 (Pancreas Localization):

由于胰腺病灶在CT扫描中通常是一个小区域,因此胰腺的定位可以加速病灶发现的过程,剪除无关信息,以便对胰腺区域进行专门训练。

#### Method:

输入图像尺寸为(224, 192, 56),采用nnU-Net对图像进行分割,并将CT的胰腺部分取出,采用固定的大小(160, 256, 40),以便更细粒度对CT进行分类和预测。





#### **PANDA**



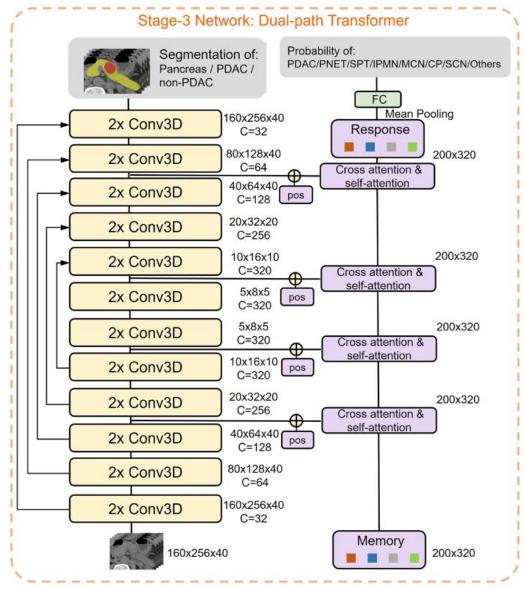
# Stage 2 (Lesion Detection):

这一阶段的目的是检测病变(PDAC/Non-PDAC)V5 Normal Method: 采用nnLl-Net对图像进行进一步分割(分割病灶),同时在模型中加入多尺度池化层,预测病变概率。 Loss Function: 该网络由分割损失和分类损失共同监督:  $\mathcal{L} = \mathcal{L}_{seg} + \alpha \mathcal{L}_{cls}$ ,其中分割损失 $\mathcal{L}_{seg}$ 是由Dice损失和体素交叉熵损失的均匀混合,分类损失是交叉熵损失。 $\alpha$ 设置为 $\mathbf{0.3}$ 以平衡两个损失函数的贡献。





#### **PANDA**




#### Stage 3 (Differential Diagnosis):

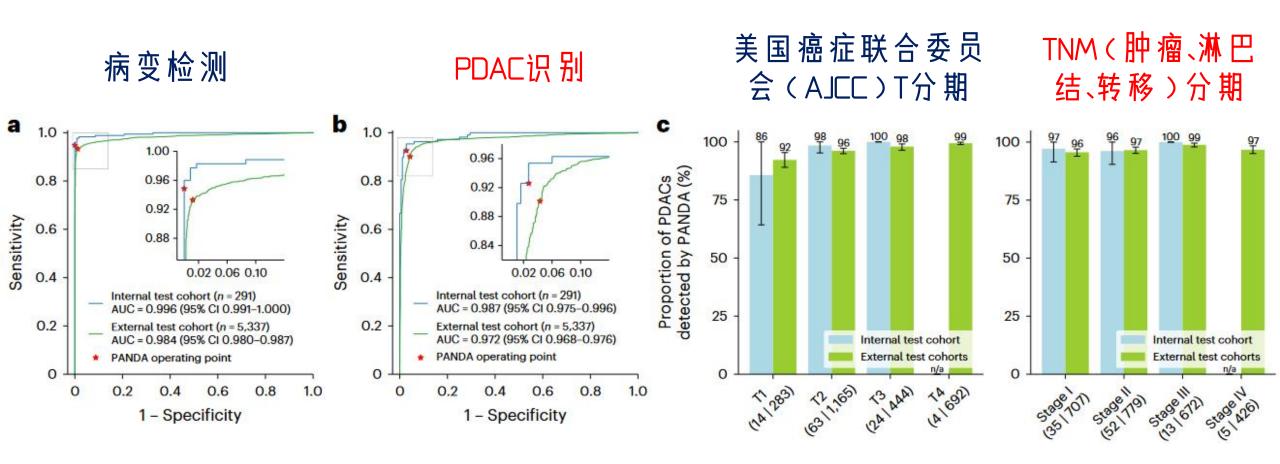
第三阶段的目标是胰腺病变类型的鉴别诊断,分为八个亚型,即PDAC,PNET,SPT,IPMN,MCN,慢性胰腺炎,SCN和其他。

Method: 采用nnU-Net对图像进行进一步分割(分割病灶:胰腺/PDAC/Non-PDAC),同时在模型中加入可学习的记忆 token与跨层共享的可学习的位置编码,cross-attention和 self-attention:  $y^m=$ 

 $softmax(\frac{(q^m(k^{cm}))^T}{\sqrt{d}})v_n^{cm}$ ;其中 $q^m,k^m,v^m$ 为 memory的query,key,value。 $k^{cm}=[k^ck^m]$ , $v^{cm}=[v^cv^m]$ 。 $k^c,v^c$ 为图像的key和value。



# 衡量指标

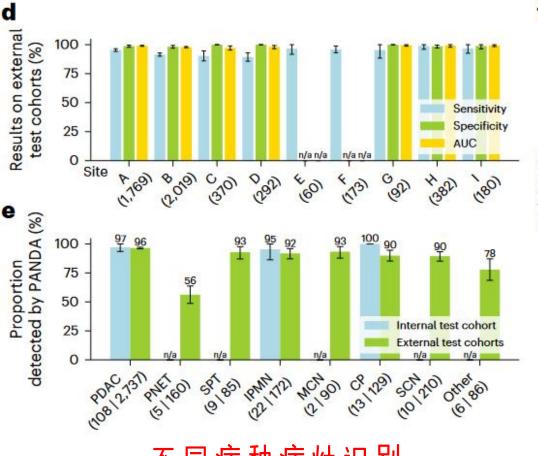



# Sensitivity (敏感性), Specificity (特异性), AUC

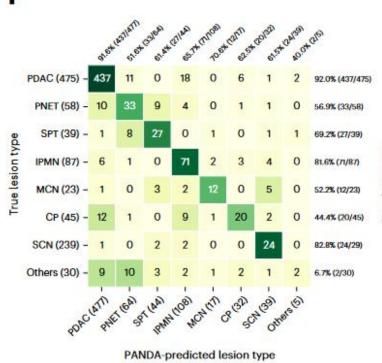
| 预测\实际 |    | 金标准                                            |                                          | 合计                           |                                       |                            |
|-------|----|------------------------------------------------|------------------------------------------|------------------------------|---------------------------------------|----------------------------|
|       |    | 阳性                                             | 阴性                                       | ΠИ                           |                                       |                            |
| 诊断结果  | 阳性 | 真阳性 (TP)                                       | 假阳性 (FP)                                 | prediction<br>positive=TP+FP | PPV=TP/prediction positive, Precision | FDR=FP/prediction positive |
|       | 阴性 | 假阴性 (FN)                                       | 真阴性 (TN)                                 | prediction<br>negative=FN+TN | FOR=FN/prediction positive            | NPV=TN/prediction positive |
| 合计    |    | condition<br>positive=TP+FN                    | condition<br>negative=FP+TN              | N=TP+FN+FP+TN                |                                       |                            |
|       |    | TPR=TP/condition positive, Sensitivity, Recall | FPR=FP/condition negative, 1-Specificity |                              |                                       |                            |
|       |    | FNR=FN/condition positive, 1-Sensitivity       | TNR=TN/condition negative, Specificity   |                              |                                       |                            |

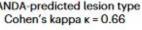
#### **Internal Evaluation & External Evaluation**



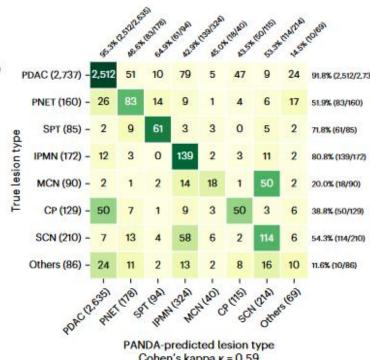



#### Internal Evaluation & External Evaluation





# 外部鉴别诊断阵列中不同机构数据

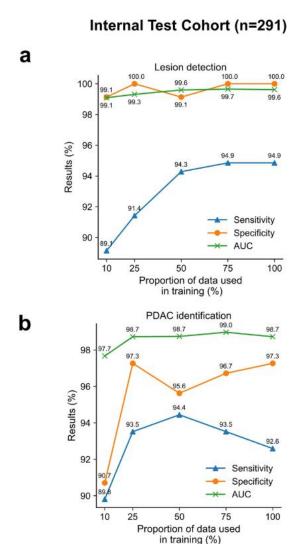


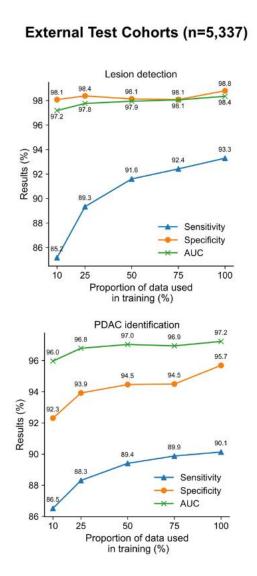


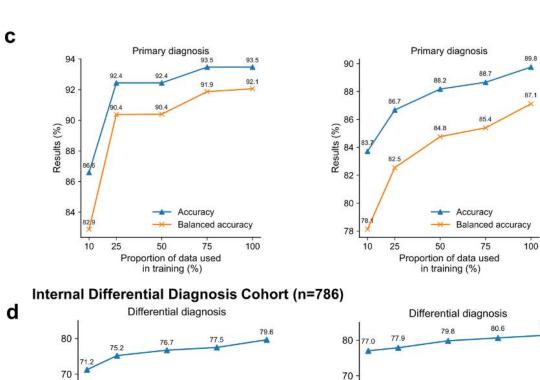

不同病种病灶识别

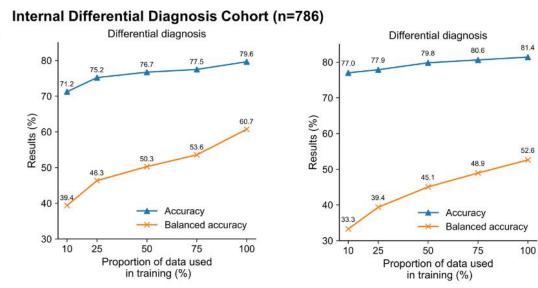






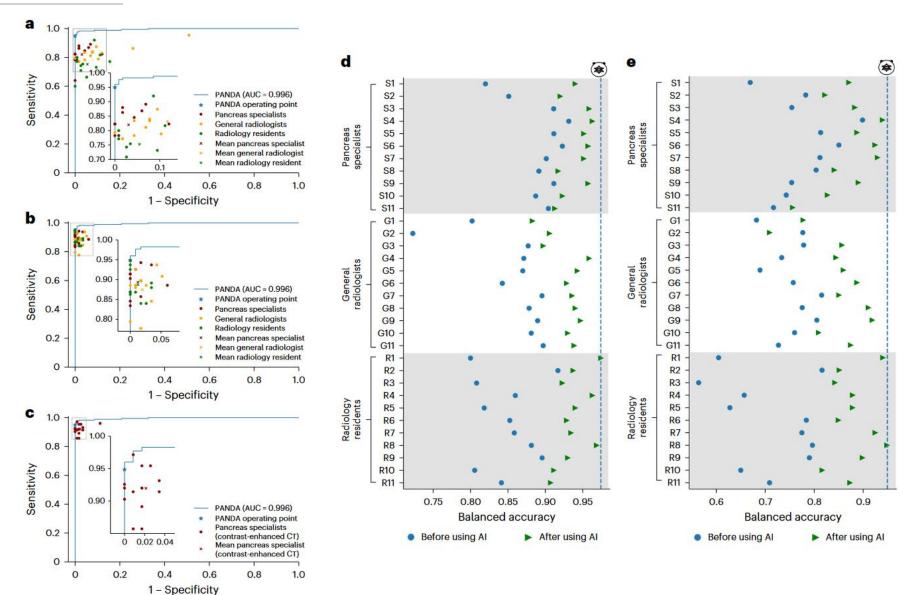





Cohen's kappa k = 0.59


#### **Internal Evaluation & External Evaluation**



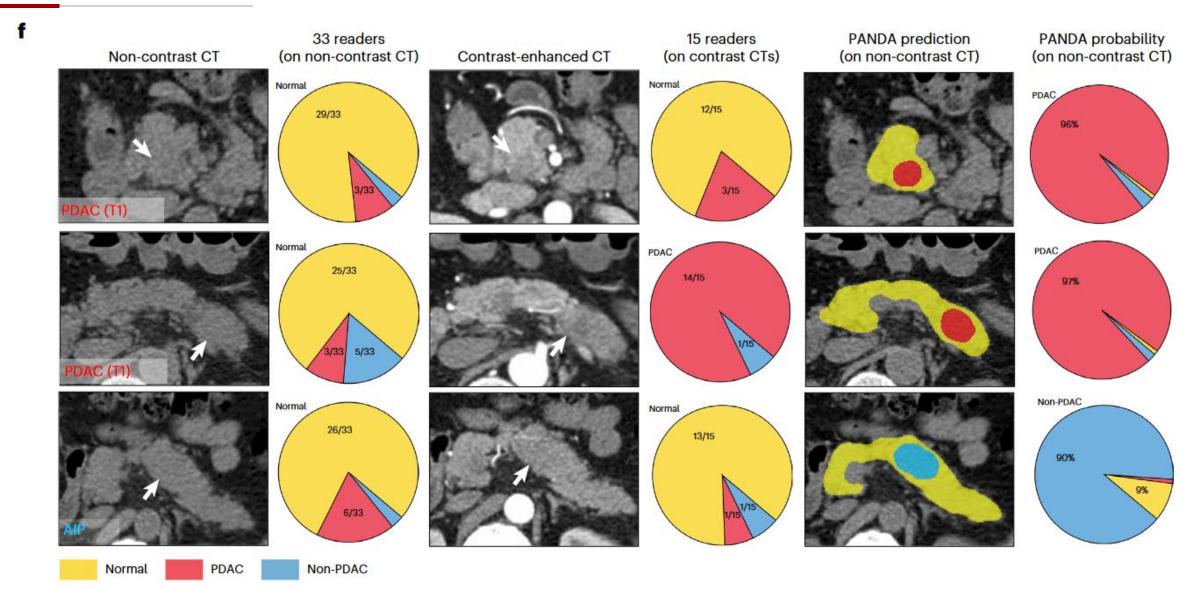








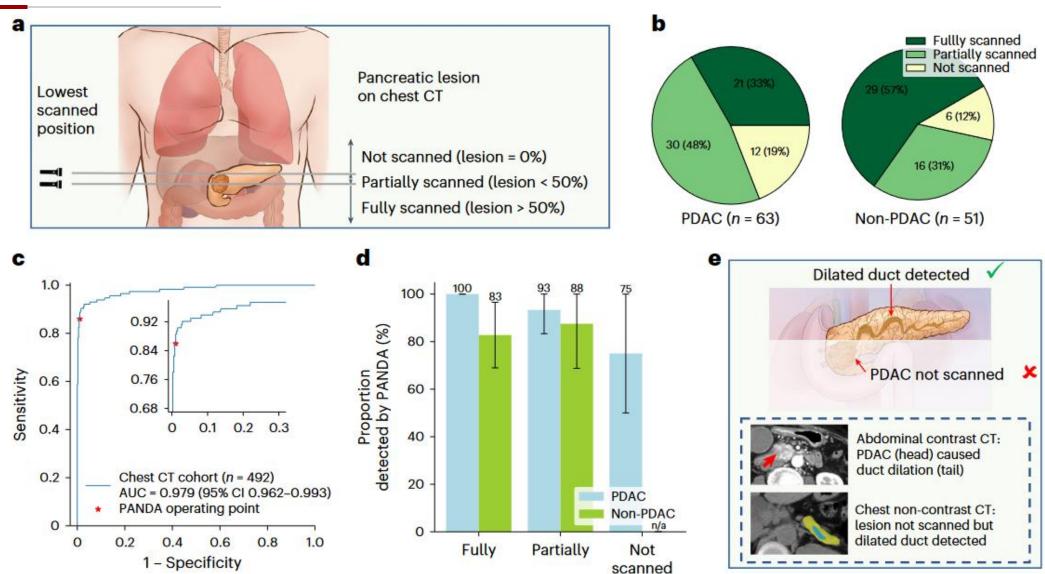

#### **Reader Studies**






思想自由 兼容并包 < 12 >

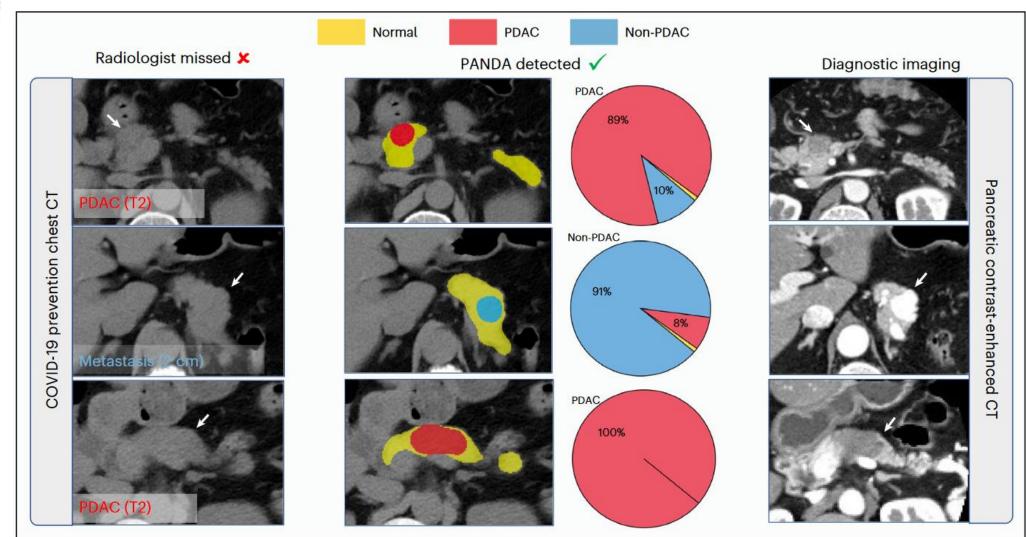
#### **Reader Studies**





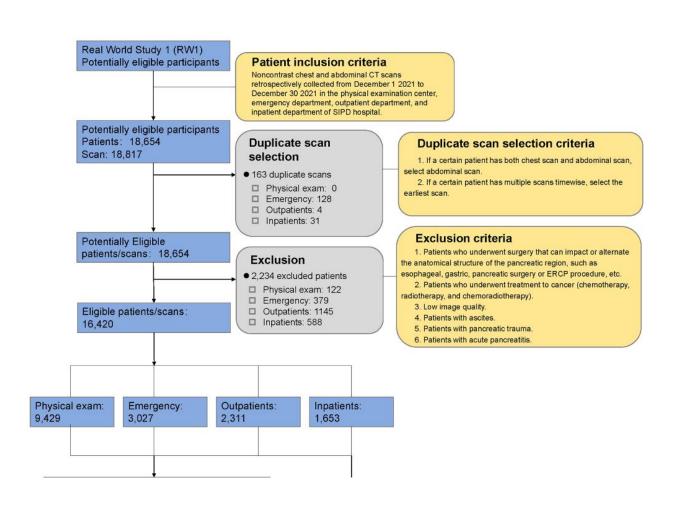

思想自由 兼容并包

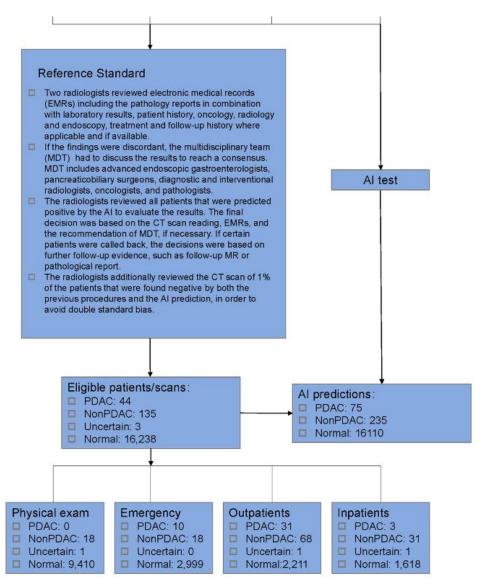
#### **Lesion Detection on Chest CT**






#### **Lesion Detection on Chest CT**

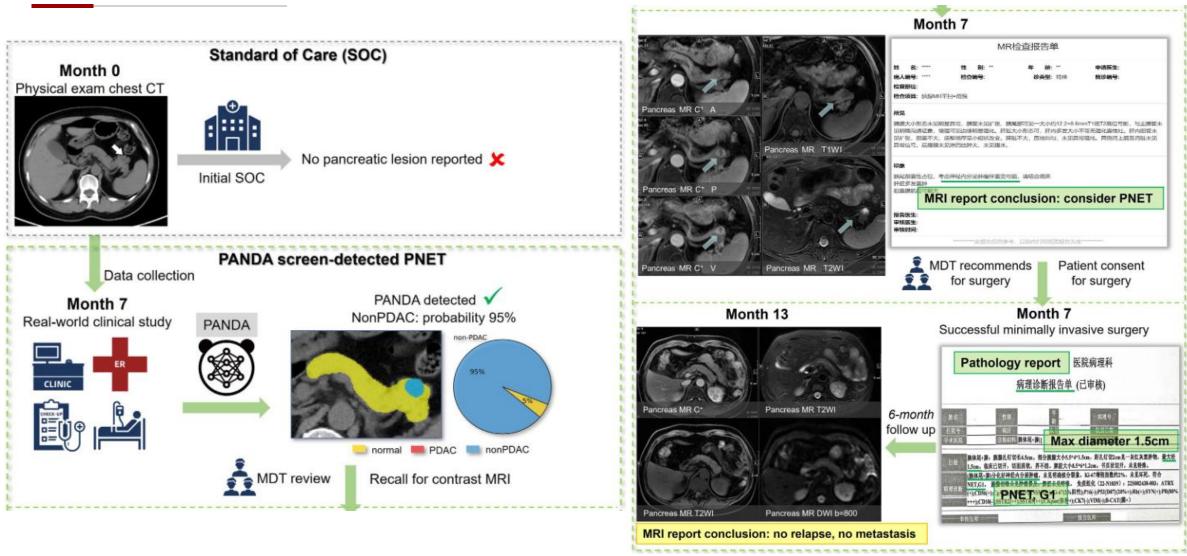





#### **Real-World Study**








思想自由 兼容并包

#### 真实案例





思想自由 兼容并包

# **Reader Experience**



| Reader ID           | Experience<br>(yr) | CT read<br>per year | Pancreatic CT<br>read per year | Traning/Expertise    |
|---------------------|--------------------|---------------------|--------------------------------|----------------------|
|                     | (0)                |                     |                                |                      |
| Specialist 1 (S1)   | 17                 | 7,500               | 950                            | Pancreatic radiology |
| Specialist 2 (S2)   | 14                 | 3,000               | 550                            | Pancreatic radiology |
| Specialist 3 (S3)   | 14                 | 15,000              | 1,500                          | Pancreatic radiology |
| Specialist 4 (S4)   | 7                  | 20,000              | 2,000                          | Pancreatic radiology |
| Specialist 5 (S5)   | 7                  | 12,000              | 460                            | Pancreatic radiology |
| Specialist 6 (S6)   | 7                  | 12,000              | 1000                           | Pancreatic radiology |
| Specialist 7 (S7)   | 9                  | 7500                | 340                            | Pancreatic radiology |
| Specialist 8 (S8)   | 12                 | 11,000              | 450                            | Pancreatic radiology |
| Specialist 9 (S9)   | 13                 | 16,565              | 2600                           | Pancreatic radiology |
| Specialist 10 (S10) | 8                  | 15,000              | 560                            | Pancreatic radiology |
| Specialist 11 (S11) | 8                  | 8000                | 1000                           | Pancreatic radiology |
| General 1 (G1)      | 13                 | 3,000               | 150                            | General radiology    |
| General 2 (G2)      | 31                 | 5,000               | 300                            | General radiology    |
| General 3 (G3)      | 9                  | 13,000              | 200                            | General radiology    |
| General 4 (G4)      | 9                  | 3800                | 170                            | General radiology    |
| General 5 (G5)      | 8                  | 1,800               | 100                            | General radiology    |
| General 6 (G6)      | 8                  | 20,000              | 500                            | General radiology    |
| General 7 (G7)      | 8                  | 1500                | 100                            | General radiology    |
| General 8 (G8)      | 10                 | 15,000              | 300                            | General radiology    |
| General 9 (G9)      | 9                  | 3200                | 150                            | General radiology    |
| General 10 (G10)    | 10                 | 18,000              | 200                            | General radiology    |
| General 11 (G11)    | 9                  | 3000                | 150                            | General radiology    |

| Resident 1 (R1)     | 2  | 4,500      | 300   | General radiology    |
|---------------------|----|------------|-------|----------------------|
| Resident 2 (R2)     | 3  | 5,000      | 350   | General radiology    |
| Resident 3 (R3)     | 2  | 1,000      | 200   | General radiology    |
| Resident 4 (R4)     | 2  | 12,000     | 1,000 | General radiology    |
| Resident 5 (R5)     | 2  | 500        | 100   | General radiology    |
| Resident 6 (R6)     | 4  | 6500       | 200   | General radiology    |
| Resident 7 (R7)     | 2  | 300        | 100   | General radiology    |
| Resident 8 (R8)     | 8  | $12,\!000$ | 350   | General radiology    |
| Resident 9 (R9)     | 4  | 6000       | 200   | General radiology    |
| Resident 10 (R10)   | 2  | 1200       | 100   | General radiology    |
| Resident 11 (R11)   | 4  | 6000       | 200   | General radiology    |
| Specialist 12 (S12) | 6  | 16,000     | 400   | Pancreatic radiology |
| Specialist 13 (S13) | 7  | 17,000     | 400   | Pancreatic radiology |
| Specialist 14 (S14) | 7  | 15,000     | 500   | Pancreatic radiology |
| Specialist 15 (S15) | 12 | 17,000     | 2,000 | Pancreatic radiology |
| Specialist 16 (S16) | 8  | 25,000     | 500   | Pancreatic radiology |
| Specialist 17 (S17) | 10 | 17,000     | 1,000 | Pancreatic radiology |
| Specialist 18 (S18) | 6  | 23,000     | 500   | Pancreatic radiology |
| Specialist 19 (S19) | 12 | 20,000     | 2,000 | Pancreatic radiology |
| Specialist 20 (S20) | 12 | 30,000     | 3,000 | Pancreatic radiology |
| Specialist 21 (S21) | 6  | 17,000     | 400   | Pancreatic radiology |
| Specialist 22 (S22) | 7  | $15,\!000$ | 1,000 | Pancreatic radiology |
| Specialist 23 (S23) | 19 | 20,000     | 450   | Pancreatic radiology |
| Specialist 24 (S24) | 10 | 20,000     | 450   | Pancreatic radiology |
| Specialist 25 (S25) | 10 | 20,000     | 500   | Pancreatic radiology |
| Specialist 26 (S26) | 10 | 21,000     | 500   | Pancreatic radiology |

# 总结



本文提出了PANDA,可以检测七种最常见的胰腺病变和"other"病变,并在常规非增强 CT 扫描中诊断病变亚型。长期以来,这项任务一直被认为对于放射科医生来说是不可能的

在使用PANDA作为辅助手段的情况下,普通放射科医生也能够达到专家医生的水准。PANDA对外部中心和现实世界人群表现出有效的普遍性。

PANDA良好的通用性可归因于以下因素

- 训练数据来自大容量三甲医院,涵盖了中国人群的不同代表性
- 对于人工智能模型来说,非造影 CT 可能比造影增强 CT 更通用
- 结合了分割(捕获局部病理基础)和分类,降低了纯基于分类的人工智能模型的过度拟合风险
- 该模型经过调整,在大型训练集(n=3,208)的交又验证过程中产生 99%的特异性,以实现对误报的可靠控制
- 通过对外部中心和现实世界的误报进行微调,将特异性提高到 99.9%
- 关于训练数据,病例和对照采用相似的 CT 成像协议 (例如切片厚度、CT 剂量指数、口腔水)从而迫使模型专注于主要学习目标,而不是拟合捷径或混杂因素

PANDA可以很好地用于胸片CT和腹部CT来判断胰腺癌,为大面积筛查胰腺癌提供了可能性



它疯狂地求生存、充满创意; 它手段残酷、精明狡诈; 它寸土必争,还具有防御意识。 有时候,它似乎是在教我们要怎样才能生存下来。 ——《癌症传:重病之王》

思想自由 兼容并包

# 自我介绍





利友诚 北京大学博一 机器学习/医学图像 youchengli.com

我是北京大学智能科学与技术学院的博士生,导师是王立威教授。我对机器学习,尤其是计算机视觉在生物医学工程领域的应用很感兴趣。

正在寻求科研合作机会。课题组和北大肿瘤医院、协和等多家国内顶级肿瘤医院以及基层医院有合作。欢迎进行合作与交流。

#### Selected Paper (MICCAI2023 Early Accept):

Home > Medical Image Computing and Computer Assisted Intervention – MICCAI 2023 > Conference paper

Mining Negative Temporal Contexts for False Positive Suppression in Real-Time Ultrasound Lesion Detection

<u>Haojun Yu, Youcheng Li, QuanLin Wu, Ziwei Zhao, Dengbo Chen, Dong Wang & Liwei Wang 🖯</u>

Conference paper | First Online: 01 October 2023

2176 Accesse

Part of the Lecture Notes in Computer Science book series (LNCS, volume 14225)

Time

Caused Frame May

Tomporal Head

A

Tompor



News (outstanding student featured in the promotion of Xian Jiaotong University.):





Q&A

汇报人: 利友诚